Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 38
Number of page(s) 11
Published online 12 April 2019
  • Tanabe K. (1999) Industrial application of solid acid–base catalysts, Appl. Catal. A: General 181, 399–434. [CrossRef] [MathSciNet] [Google Scholar]
  • Vermeiren W., Gilson J.-P. (2009) Impact of zeolites on the petroleum and petrochemical industry, Top. Catal. 52, 1131–1161. [Google Scholar]
  • Agudelo J.L., Hensen E.J.M., Giraldo S.A., Hoyos L.J. (2015) Influence of steam-calcination and acid leaching treatment on the VGO hydrocracking performance of faujasite zeolite, Fuel Process. Technol. 133, 89–96. [CrossRef] [Google Scholar]
  • Deshmukh A.R.A.S., Gumaste V.K., Bhawal B.M. (2000) Alkylation of benzene with long chain (C8–C18) linear primary alcohols over zeolite-Y, Catal. Lett. 64, 247–250. [CrossRef] [Google Scholar]
  • Breck D.W. (1964) Crystalline Zeolite Y. US patent 3,130,007A, assigned to Union Carbide Corp. [Google Scholar]
  • Olson D. (1969) The crystal structure of the zeolite hydrogen faujasite, J. Catal. 13, 221–231. [Google Scholar]
  • Tosheva L., Valtchev V.P. (2005) Nanozeolites: Synthesis, crystallization mechanism, and applications, Chem. Mater. 17, 2494–2513. [Google Scholar]
  • Choi M., Na K., Kim J., Sakamoto Y., Terasaki O., Ryoo R. (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461, 246–249. [CrossRef] [PubMed] [Google Scholar]
  • Borel M., Dodin M., Daou T.J., Bats N., Harbuzaru B., Patarin J. (2017) SDA-free hydrothermal synthesis of high-silica ultra-nanosized zeolite Y, Cryst. Growth Des. 17, 1173–1179. [Google Scholar]
  • Zhang X., Liu D., Xu D., Asahina S., Cychosz K.A., Agrawal K.V., Al Wahedi Y., Bhan A., Al Hashimi S., Terasaki O., Thommes M., Tsapatsis M. (2012) Synthesis of self-pillared zeolite nanosheets by repetitive branching, Science 336, 1684–1687. [Google Scholar]
  • Holmberg B.A., Wang H., Yan Y. (2004) High silica zeolite Y nanocrystals by dealumination and direct synthesis, Microporous Mesoporous Mater. 74, 189–198. [Google Scholar]
  • van Donk S., Janssen A.H., Bitter J.H., de Jong K.P. (2003) Generation, characterization, and impact of mesopores in zeolite catalysts, Catal. Rev. 45, 297–319. [CrossRef] [Google Scholar]
  • Schuster C., Hölderich W.F. (2000) Modification of faujasites to generate novel hosts for “ship-in-a-bottle” complexes, Catal. Today 60, 193–207. [Google Scholar]
  • Qin Z., Shen B., Yu Z., Deng F., Zhao L., Zhou S., Yuan D., Gao X., Wang B., Zhao H., Liu H. (2013) A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking, J. Catal. 298, 102–111. [Google Scholar]
  • Pérez-Ramírez J., Christensen C.H., Egeblad K., Christensen C.H., Groen J.C. (2008) Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design, Chem. Soc. Rev. 37, 2530. [CrossRef] [PubMed] [Google Scholar]
  • Parlett C.M.A., Wilson K., Lee A.F. (2013) Hierarchical porous materials: Catalytic applications, Chem. Soc. Rev. 42, 3876–3893. [PubMed] [Google Scholar]
  • Serrano D.P., Escola J.M., Pizarro P. (2013) Synthesis strategies in the search for hierarchical zeolites, Chem. Soc. Rev. 42, 4004–4035. [CrossRef] [PubMed] [Google Scholar]
  • Verboekend D., Vilé G., Pérez-Ramírez J. (2012) Hierarchical Y and USY zeolites designed by post-synthetic strategies, Adv. Funct. Mater. 22, 916–928. [CrossRef] [Google Scholar]
  • Holm M.S., Taarning E., Egeblad K., Christensen C.H. (2011) Catalysis with hierarchical zeolites, Catal. Today 168, 3–16. [CrossRef] [Google Scholar]
  • García-Martínez J., Johnson M., Valla J., Li K., Ying J.Y. (2012) Mesostructured zeolite Y – high hydrothermal stability and superior FCC catalytic performance, Catal. Sci. Technol. 2, 987–994. [CrossRef] [Google Scholar]
  • Zhou L., Shi M., Cai Q., Wu L., Hu X., Yang X., Chen C., Xu J. (2013) Hydrolysis of hemicellulose catalyzed by hierarchical H-USY zeolites – The role of acidity and pore structure, Microporous Mesoporous Mater. 169, 54–59. [CrossRef] [Google Scholar]
  • Wang Y., Lin M., Tuel A. (2007) Hollow TS-1 crystals formed via a dissolution–recrystallization process, Microporous Mesoporous Mater. 102, 80–85. [CrossRef] [Google Scholar]
  • Wang Y., Tuel A. (2008) Nanoporous zeolite single crystals: ZSM-5 nanoboxes with uniform intracrystalline hollow structures, Microporous Mesoporous Mater. 113, 286–295. [CrossRef] [Google Scholar]
  • Pagis C., Morgado Prates A.R., Farrusseng D., Bats N., Tuel A. (2016) Hollow zeolite structures: An overview of synthesis methods, Chem. Mater. 28, 5205–5223. [CrossRef] [Google Scholar]
  • Morgado Prates A.R., Pagis C., Meunier F.C., Burel L., Epicier T., Roiban L., Koneti S., Bats N., Farrusseng D., Tuel A. (2018) Hollow beta zeolite single crystals for the design of selective catalysts, Cryst. Growth Des. 18, 592–596. [CrossRef] [Google Scholar]
  • Pagis C., Morgado Prates A.R., Bats N., Tuel A., Farrusseng D. (2018) High-silica hollow Y zeolite by selective desilication of dealuminated NaY crystals in the presence of protective Al species, CrystEngComm 20, 1564–1572. [CrossRef] [Google Scholar]
  • Li S., Aquino C., Gueudré L., Tuel A., Schuurman Y., Farrusseng D. (2014) Diffusion-driven selectivity in oxidation of CO in the presence of propylene using zeolite nano shell as membrane, ACS Catal. 4, 4299–4303. [CrossRef] [Google Scholar]
  • Li S., Boucheron T., Tuel A., Farrusseng D., Meunier F. (2014) Size-selective hydrogenation at the subnanometer scale over platinum nanoparticles encapsulated in silicalite-1 single crystal hollow shells, Chem. Commun. 50, 1824–1826. [CrossRef] [Google Scholar]
  • Li S., Tuel A., Rousset J.-L., Morfin F., Aouine M., Burel L., Meunier F., Farrusseng D. (2016) Hollow zeolite single-crystals encapsulated alloy nanoparticles with controlled size and composition, ChemNanoMat 2, 534–539. [CrossRef] [Google Scholar]
  • Farrusseng D., Tuel A. (2016) Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis, New J. Chem. 40, 3933–3949. [CrossRef] [Google Scholar]
  • Ginter D.M., Bell A.T., Radke C.J. (1992) The effects of gel aging on the synthesis of NaY zeolite from colloidal silica, Zeolites 12, 742–749. [CrossRef] [Google Scholar]
  • Klinowski J. (1984) Nuclear magnetic resonance studies of zeolites, Progr. Nucl. Magn. Reson. Spectrosc. 16, 237–309. [CrossRef] [Google Scholar]
  • Groen J.C., Moulijn J.A., Pérez-Ramírez J. (2007) Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up, Ind. Eng. Chem. Res. 46, 4193–4201. [CrossRef] [Google Scholar]
  • Beyer H.K. (2002) Dealumination techniques for zeolites, Post-Synthesis Modification I, Springer, Berlin, Heidelberg, pp. 203–255. [CrossRef] [Google Scholar]
  • Fichtner-Schmittler H., Lohse U., Engelhardt G., Patzelová V. (1984) Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters, Cryst. Res. Technol. 19, K1–K3. [CrossRef] [Google Scholar]
  • Kubelková L., Dudíková L., Bastl Z., Borbély G., Beyer H.K. (1987) Aluminium distribution in the bulk and on the surface of Y zeolites dealuminated with SiCl4 vapour. Influence of conditions of dealumination, J. Chem. Soc. Faraday Trans. 1 83, 511–516. [CrossRef] [Google Scholar]
  • Yuan D., Kang C., Wang W., Li H., Zhu X., Wang Y., Gao X., Wang B., Zhao H., Liu C., Shen B. (2016) Creation of mesostructured hollow Y zeolite by selective demetallation of an artificial heterogeneous Al distributed zeolite crystal, Catal. Sci. Technol. 6, 8364–8374. [CrossRef] [Google Scholar]
  • Lutz W., Löffler E., Zibrowius B. (1993) Increased hydrothermal stability of highly dealuminated Y zeolites by alumination, Zeolites 13, 685–686. [CrossRef] [Google Scholar]
  • Verboekend D., Nuttens N., Locus R., Van Aelst J., Verolme P., Groen J.C., Pérez-Ramírez J., Sels B.F. (2016) Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions, Chem. Soc. Rev. 45, 3331–3352. [CrossRef] [PubMed] [Google Scholar]
  • Deshpande R.R., Eckert H. (2009) Sol-gel preparation of mesoporous sodium aluminosilicate glasses: mechanistic and structural investigations by solid state nuclear magnetic resonance, J. Mater. Chem. 19, 3419. [CrossRef] [Google Scholar]
  • Emeis C.A. (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal. 141, 347–354. [CrossRef] [Google Scholar]
  • Boréave A., Auroux A., Guimon C. (1997) Nature and strength of acid sites in HY zeolites: a multitechnical approach, Microporous Mater. 11, 275–291. [CrossRef] [Google Scholar]
  • Taylor R.J., Petty R.H. (1994) Selective hydroisomerization of long chain normal paraffins, Appl. Catal. A: General 119, 121–138. [CrossRef] [Google Scholar]
  • Deldari H. (2005) Suitable catalysts for hydroisomerization of long-chain normal paraffins, Appl. Catal. A: General 293, 1–10. [CrossRef] [Google Scholar]
  • Weitkamp J. (2012) Catalytic hydrocracking-mechanisms and versatility of the process, ChemCatChem 4, 292–306. [CrossRef] [Google Scholar]
  • Alvarez F., Ribeiro F.R., Perot G., Thomazeau C., Guisnet M. (1996) Hydroisomerization and Hydrocracking of Alkanes, J. Catal. 162, 179–189. [CrossRef] [Google Scholar]
  • Guisnet M. (2013) “Ideal” bifunctional catalysis over Pt-acid zeolites, Catal. Today 218–219, 123–134. [CrossRef] [Google Scholar]
  • Batalha N., Pinard L., Bouchy C., Guillon E., Guisnet M. (2013) n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites, J. Catal. 307, 122–131. [CrossRef] [Google Scholar]
  • Zecevic J., Vanbutsele G., de Jong K.P., Martens J.A. (2015) Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons, Nature 528, 245–248. [CrossRef] [PubMed] [Google Scholar]
  • Soualah A., Lemberton J.L., Pinard L., Chater M., Magnoux P., Moljord K. (2008) Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts: Effect of the zeolite structure on the product selectivity and on the reaction mechanism, Appl. Catal. A: General 336, 23–28. [CrossRef] [Google Scholar]
  • Mendes P.S.F., Silva J.M., Ribeiro M.F., Duchêne P., Daudin A., Bouchy C. (2017) Quantification of metal-acid balance in hydroisomerization catalysts: A step further toward catalyst design, AIChE J. 63, 2864–2875. [CrossRef] [Google Scholar]
  • Verheyen E., Jo C., Kurttepeli M., Vanbutsele G., Gobechiya E., Korányi T.I., Bals S., Van Tendeloo G., Ryoo R., Kirschhock C.E.A., Martens J.A. (2013) Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking, J. Catal. 300, 70–80. [CrossRef] [Google Scholar]
  • Pagis C., Meunier F.C., Schuurman Y., Tuel A., Dodin M., Franco-Martinez R., Farrusseng D. (2018) Demonstration of improved effectiveness factor of catalysts based on hollow single crystal zeolites, ChemCatChem 10, 4525–4529. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.