Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 40
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2019013
Published online 12 April 2019
  • Al-Anazi A., Babadagli T. (2009) Automatic fracture density update using smart data and artificial neural networks, Comput. Geosci. 36, 3, 335–347. doi: 10.1016/j.cageo.2009.08.005. [CrossRef] [Google Scholar]
  • Almeida Netto S.L., Schiozer D.J., Ligero E.L., Maschio C. (2003, January) History matching using uncertainty analysis, Canadian International Petroleum Conference, Petroleum Society of Canada. doi: 10.2118/2003-145. [Google Scholar]
  • Al-Harbi M., Cheng H., He Z., Datta-Gupta A. (2004, September) Streamline-based production data integration in naturally fractured reservoirs, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. doi: 10.2118/89914-PA. [Google Scholar]
  • Altman N., Léger C. (1995) Bandwidth selection for kernel distribution function estimation, J. Stat. Plann. Inference 46, 2, 195–214. doi: 10.1016/0378-3758(94)00102-2. [CrossRef] [Google Scholar]
  • Arastoopour H., Chen S.T. (1991, January) Sensitivity analysis of key reservoir parameters in gas reservoirs, SPE Gas Technology Symposium, Society of Petroleum Engineers. doi: 10.2118/21515-MS. [Google Scholar]
  • Avansi G.D., Maschio C., Schiozer D.J. (2016) Simultaneous history matching approach using reservoir-characterization and reservoir-simulation studies, SPE Reserv. Eval. Eng. 19, 694–712. doi: 10.2118/179740-PA. [CrossRef] [Google Scholar]
  • Becerra G.G., Maschio C., Schiozer D.J. (2011) Petroleum reservoir uncertainty mitigation through the integration with production history matching, J. Braz. Soc. Mech. Sci. Eng. XXXIII, 2, 147–158. doi: 10.1590/S1678-58782011000200005. [CrossRef] [Google Scholar]
  • Bourbiaux B. (2010) Fractured reservoir simulation: A challenging and rewarding issue, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 65, 2, 227–238. doi: 10.2516/ogst/2009063. [CrossRef] [Google Scholar]
  • Caers J. (2003) Efficient gradual deformation using streamline-based proxy method, J. Petrol. Sci. Eng. 39, 57–83. doi: 10.1016/S0920-4105(03)00040-8. [CrossRef] [Google Scholar]
  • Correia M.G., Maschio C., von Hohendorff Filho J.C., Schiozer D.J. (2016) The impact of time-dependent matrix-fracture fluid transfer in upscaling match procedures, J. Petrol. Sci. Eng. 146, 752–763. doi: 10.1016/j.petrol.2016.07.039. [CrossRef] [Google Scholar]
  • Costa L.A.N., Maschio C., Schiozer D.J. (2018) A new methodology to reduce uncertainty of global attributes in naturally fractured reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 41, 1–23. doi: 10.2516/ogst/2018038. [CrossRef] [Google Scholar]
  • Cui H., Kelkar M. (2005, April) History matching of naturally fractured reservoir and a case study, SPE Western Regional Meeting, Society of Petroleum Engineers. doi: 10.2118/94037-MS. [Google Scholar]
  • De Lima A., Lange A., Schiozer D.J. (2009, June) Assisted history matching for the characterization and recovery optimization of fractured reservoirs using connectivity analysis, EAGE Annual Conference & Exhibition incorporating SPE Europec, Society of Petroleum Engineers. doi: 10.2118/154392-MS. [Google Scholar]
  • Faucher D., Rasmussen P.F., Bobée B. (2001) A distribution function based bandwidth selection method for kernel quantile estimation, J. Hydrol. 250, 1–4, 1–11. doi: 10.1016/S0022-1694(01)00359-6. [CrossRef] [Google Scholar]
  • Fenwick D.H., Scheidt C., Caers J. (2014) Quantifying asymmetric parameter interaction in sensitivity analysis: application to reservoir modeling, Math. Geosci. 46, 4, 493–511. doi: 10.1007/s11004-014-9530-5. [CrossRef] [Google Scholar]
  • Gang T., Kelkar M. (2008) History matching for determination of fracture permeability and capillary pressure, SPE Reserv. Eval. Eng. 11, 5, 813–822. doi: 10.2118/101052-PA. [CrossRef] [Google Scholar]
  • Gilman J.R., Kazemi H. (1983) Improvements in simulation of naturally fractured reservoirs, Soc. Pet. Eng. J. 23, 4, 695–707. [CrossRef] [Google Scholar]
  • Ginting V., Pereira F., Presho M., Wo S. (2011) Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model, Comput. Geosci. 15, 4, 691–707. doi: 10.1007/s10596-011-9236-4. [CrossRef] [Google Scholar]
  • Iooss B, Lemaître P (2015) Uncertainty management in simulation-optimization of complex systems, in: Dellino G., Meloni C. (eds), Operations Research/Computer Science Interfaces Series, Vol. 59, Springer, Boston, MA. doi: 10.1007/978-1-4899-7547-8_5. [Google Scholar]
  • Jafari A., Babadagli T. (2008) A sensitivity analysis for effective parameters on fracture network permeability, SPE Western Regional and Pacific Section AAPG Joint Meeting, Society of Petroleum Engineers. doi: 10.2118/113618-MS. [Google Scholar]
  • Jenni S., Hu L.Y., Basquet R., de Marsily G., Bourbiaux B. (2007) History matching of a stochastic model of field-scale fractures: Methodology and case study, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 62, 2, 265–276. doi: 10.2516/ogst: 2007022. [CrossRef] [Google Scholar]
  • Kassenov B., King G.R., Chaudhri M., Abdrakhmanova A., Jenkins S., Bateman P., Iskakov E. (2014, November) Efficient workflow for assisted history matching and Brownfield design of experiments for the Tengiz field, SPE Annual Caspian Technical Conference and Exhibition, Society of Petroleum Engineers. doi: 10.2118/172329-MS. [Google Scholar]
  • Lange A.G. (2009) Assisted history matching for the characterization of fractured reservoirs, AAPG Bull. 93, 11, 1609–1619. doi: 10.1306/08040909050. [CrossRef] [Google Scholar]
  • Lemonnier P., Bourbiaux B. (2010a) Simulation of naturally fractured reservoirs. State of the art – Part 1 – Physical mechanisms and simulator formulation, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 65, 2, 239–262. doi: 10.2516/ogst/2009066. [CrossRef] [Google Scholar]
  • Lemonnier P., Bourbiaux B. (2010b) Simulation of naturally fractured reservoirs. State of the art – Part 2 – Matrix-fracture transfers and typical features of numerical studies, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 65, 2, 263–286. doi: 10.2516/ogst/2009067. [CrossRef] [Google Scholar]
  • Liu J., Bodvarsson G.S., Wu Y.S. (2003) Analysis of flow behavior in fractured lithophysal reservoirs, J. Contam. Hydrol. 62, 189–211. doi: 10.1016/S0169-7722(02)00169-9. [CrossRef] [PubMed] [Google Scholar]
  • Manceau J.C., Rohmer J. (2016) Post-injection trapping of mobile CO2 in deep aquifers: Assessing the importance of model and parameter uncertainties, Comput. Geosci. 20, 6, 1251–1267. doi: 10.1007/s10596-016-9588-x. [CrossRef] [Google Scholar]
  • Maschio C., Schiozer D.J., Moura Filho M.A.B., Becerra G.G. (2009) A methodology to reduce uncertainty constrained to observed data, SPE Reserv. Eval. Eng. 12, 1, 167–180. doi: 10.2118/111030-PA. [CrossRef] [Google Scholar]
  • Maschio C., Schiozer D.J. (2016) Probabilistic history matching using discrete Latin Hypercube sampling and nonparametric density estimation, J. Petrol. Sci. Eng. 147, 98–115. doi: 10.1016/j.petrol.2016.05.011. [CrossRef] [Google Scholar]
  • Mazo E.M., Schiozer D.J., (2013, June) Modeling fracture relative permeability-what is the best option?, 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, Society of Petroleum Engineers. doi: 10.3997/2214-4609.20130867. [Google Scholar]
  • Nelson R. (2001) Geologic analysis of naturally fractured reservoirs, Gulf Professional Publishing, TX, USA. [Google Scholar]
  • Ruffo P., Bazzana L., Consonni A., Corradi A., Saltelli A., Tarantola S. (2006) Hydrocarbon exploration risk evaluation through uncertainty and sensitivity analyses techniques, Reliab. Eng. Syst. Safety 91, 10–11, 1155–1162. doi: 10.1016/j.ress.2005.11.056. [CrossRef] [Google Scholar]
  • Schiozer D.J., Avansi G.D., dos Santos A.A.S. (2015) Risk quantification combining geostatistical realizations and discretized Latin Hypercube, J. Braz. Soc. Mech. Sci. Eng. 1–13, doi: 10.1007/s40430-016-0576-9. [Google Scholar]
  • Suzuki S., Daly C., Caers J., Mueller D. (2007) History matching of naturally fractured reservoirs using elastic stress simulation and probability perturbation method, SPE J. 12, 1, 118–129. doi: 10.2118/95498-PA. [CrossRef] [Google Scholar]
  • Tolstukhin E., Lyngnes B., Sudan H.H. (2012, June) Ekofisk 4D seismic history matching workflow, EAGE Annual Conference & Exhibition incorporating EUROPEC, Society of Petroleum Engineers. doi: 10.2118/154347-MS. [Google Scholar]
  • Touzani S., Busby D. (2014) Screening method using the derivative-based global sensitivity indices with application to reservoir simulator, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 4, 619–632. doi: 10.2516/ogst/2013195. [CrossRef] [Google Scholar]
  • Verscheure M., Fourno A., Chilès J.P. (2012) Joint inversion of fracture model properties for CO2 storage monitoring or oil recovery history matching, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 2, 221–235. doi: 10.2516/ogst/2011176. [CrossRef] [Google Scholar]
  • Yu W., Luo Z., Javadpour F., Varavei A., Sepehrnoori K. (2014) Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs, J. Petrol. Sci. Eng. 113, 1–7. doi: 10.1016/j.petrol.2013.12.005. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.