Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Article Number 49
Number of page(s) 18
Published online 20 April 2016
  • Poola R.B., Ng H.K., Sekar R.R., Baudino J.H., Colucci C.P. (1995) Utilizing Intake-Air Oxygen-Enrichment Technology to Reduce Cold-Phase Emissions, Vol. 104, New York, NY, Society of Automotive Engineers. 15.
  • Kajitani S., Clasen E., Campbell S., Rhee K. (1993) Partial-load and Start-up Operations of Spark-ignition Engine with Oxygen Enriched Air, SAE Technical Paper 932802.
  • Poola R.B., Sekar R., Ng H.K., Baudino J.H., Colucci C.P. (1996) The effects of oxygen-enriched intake air on FFV exhaust emissions using M85, Argonne National Lab., IL, United States.
  • Ng H.K., Sekar R.R., Kraft S.W., Stamper K. (1993) The potential benefits of intake air oxygen enrichment in spark ignition engine powered vehicle, Society of Automotive Engineers.
  • Caton J.A. (2005) Use of a cycle simulation incorporating the second law of thermodynamics: results for spark-ignition engines using oxygen enriched combustion air, SAE Technical Paper 2005-01-1130.
  • Poola R.B., Stork K.C., Sekar R., Callaghan K., Nemser S. (1998) Variable Air Composition with Polymer Membrane–A New Low Emissions Tool, SAE Paper 980178.
  • Kajitani S., Sava N., McComiskey T., Rhee K. (1992) A spark ignition engine operated by oxygen enriched air, Society of Automotive Engineers.
  • Quader A. (1978) Exhaust Emissions and Performance of a Spark Ignition Engine Using Oxygen Enriched Intake Air, Combustion Science and Technology 19, 1–2, 81–86. [CrossRef]
  • Mounaïm-Rousselle C., Landry L., Halter F., Foucher F. (2013) Experimental characteristics of turbulent premixed flame in a boosted Spark-Ignition engine, Proceedings of the Combustion Institute 34, 2, 2941–2949. [CrossRef]
  • Van Blarigan A., Seiser R., Chen J., Cattolica R., Dibble R. (2012) Working fluid composition effects on methane oxycombustion in an SI-engine: EGR vs. CO2, Proceedings of the Combustion Institute 34, 2, 2951–2958. [CrossRef]
  • Favre E., Bounaceur R., Roizard D. (2009) A hybrid process combining oxygen enriched air combustion and membrane separation for post-combustion carbon dioxide capture, Separation and Purification Technology 68, 1, 30–36. [CrossRef]
  • Koros W.J., Chern R.T. (1987) Separation of gaseous mixtures using polymer membranes, Handbook of separation process technology, pp. 862–953.
  • Coombe H.S., Nieh S. (2007) Polymer membrane air separation performance for portable oxygen enriched combustion applications, Energy Conversion and Management 48, 5, 1499–1505. [CrossRef]
  • Richard S., Bougrine S., Font G., Lafossas F.-A., Le Berr F. (2009) On the reduction of 3D CFD combustion model to build a physical 0D model for simulating heat release, knock and pollutants in SI engines, Oil & Gas Science and Technology – Rev. IFP 64, 3, 223–242. [CrossRef] [EDP Sciences] [OGST] [MathSciNet]
  • IFP Energies nouvelles (2010) AMESim IFP Engine library user manual, LMS IMAGINE S.A.
  • Bougrine S., Richard S., Veynante D. (2011) On the combination of complex chemistry with a 0-D coherent flame model to account for the fuel properties in spark ignition engines simulations: Application to methane-air-diluents mixtures, Proceedings of the Combustion Institute 33, 2, 3123–3130. [CrossRef]
  • Bozza F., Gimelli A. (2004) A Comprehensive 1D Model for the Simulation of a Small-Size Two-Stroke SI Engine, SAE Technical Paper 2004-01-0999.
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proceedings of the Combustion Institute 31, 2, 3059–3066. [CrossRef] [MathSciNet]
  • Colin O., Benkenida A., Angelberger C. (2003) 3d Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines, Oil & Gas Science and Technology – Rev. IFP 58, 1, 47–62. [CrossRef] [EDP Sciences]
  • Charlette F., Meneveau C., Veynante D. (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests, Combustion and Flame 131, 1–2, 159–180. [CrossRef]
  • Blint R.J. (1986) The Relationship of the Laminar Flame Width to Flame Speed, Combustion Science and Technology 49, 1–2, 79–92. [CrossRef]
  • Poulos S.G., Heywood J.B. (1983) The effect of chamber geometry on spark-ignition engine combustion, SAE Technical Paper 830334.
  • Zhou J.X., Cordier M., Mounaïm-Rousselle C., Foucher F. (2011) Experimental estimate of the laminar burning velocity of iso-octane in oxygen-enriched and CO2-diluted air, Combustion and Flame 158, 12, 2375–2383. [CrossRef]
  • Galmiche B., Halter F., Foucher F. (2012) Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures, Combustion and Flame 159, 11, 3286–3299. [CrossRef]
  • Friedman R., Johnston W.C. (1950) The Wall-Quenching of Laminar Propane Flames as a Function of Pressure, Temperature, and Air Fuel Ratio, Journal of Applied Physics 21, 8, 791–795. [CrossRef]
  • Mazas A.N., Fiorina B., Lacoste D.A., Schuller T. (2011) Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames, Combustion and Flame 158, 12, 2428–2440. [CrossRef]
  • Heywood J. (1994) Combustion and its modeling in spark-ignition engines, in International symposium COMODIA.
  • Boulouchos K., Steiner T., Dimopoulos P. (1994) Investigation of flame speed models for the flame growth period during premixed engine combustion, Society of Automotive Engineers.
  • Linse D., Hasse C., Durst B. (2009) An experimental and numerical investigation of turbulent flame propagation and flame structure in a turbo-charged direct injection gasoline engine, Combustion Theory and Modelling 13, 1, 167–188. [CrossRef]
  • Wirth M. (1993) Die turbulente flammenausbreitung im ottomotor und ihre charakteristischen längenskalen, in RWTH Aachen.
  • Poinsot T., Veynante D., Candel S. (1991) Quenching processes and premixed turbulent combustion diagrams, Journal of Fluid Mechanics 228, 561–606, 230.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.