IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 3, May-June 2014
IFP Energies nouvelles International Conference: Colloids 2012 – Colloids and Complex Fluids: Challenges and Opportunities
Page(s) 467 - 479
DOI https://doi.org/10.2516/ogst/2013186
Published online 04 December 2013
  • Vignes-Adler M., Weaire D. (2008) New foams: Fresh challenges and opportunities, Current Opinion in Colloid and Interfaces Science 13, 141–149. [CrossRef] [Google Scholar]
  • Cantat I., Cohen-Addad S., Elias F., Graner F., Höhler R., Pitois O., Rouyer F., Saint-Jalmes A. (2010) Les mousses : structure et dynamique, Collection Échelles, Belin, Paris, ISBN 978-2-7011-4284-5. [Google Scholar]
  • Stevenson P. (2012) Foam Engineering: Fundamentals and Applications, John Wiley and Sons, Chichester. [CrossRef] [Google Scholar]
  • Weaire D., Hutzler S. (1999) The physics of Foams, Oxford University Press, New York, ISBN 0-19-851097-7. [Google Scholar]
  • Guillermic R.M., Salonen A., Emile J., Saint-Jalmes A. (2009) Surfactant foams doped with laponite: Unusual behaviour induced by aging and confinement, Soft Matter 5, 4975–4982. [CrossRef] [Google Scholar]
  • Goyon J., Bertrand F., Pitois O., Ovarlez G. (2010) Shear Induced Drainage in Foamy Yield-Stress Fluids, Physical Review Letters 104, 12, 128301. [CrossRef] [PubMed] [Google Scholar]
  • Exerowa D., Kruglyakov P.M. (1998) Foam and foam films: Theory, Experiment, Application, Möbius D., Miller R. (eds), Elsevier, Amsterdam. [Google Scholar]
  • Georgieva D., Cagna A., Langevin D. (2009) Link between surface elasticity and foam stability, Soft Matter 5, 2063–2071. [CrossRef] [Google Scholar]
  • Langevin D. (2000) Influence of interfacial rheology on foam and emulsion properties, Advances in Colloid and Interface Science 88, 209–222. [CrossRef] [PubMed] [Google Scholar]
  • Mittal K.L., Kumar P. (2000) Emulsions, foams and thin films, Marcel Dekker Inc., New York. [Google Scholar]
  • Prud’homme R.K., Khan S.A. (1996) Foams: Theory, Measurements and Applications, Marcel Dekker Inc., New York. [Google Scholar]
  • Pugh R.J. (1996) Foaming, foam films, antifoaming and defoaming, Advances in Colloid and Interface Science 64, 67–142. [CrossRef] [Google Scholar]
  • Sheludko A. (1967) Thin liquid films, Advances in Colloid and Interface Science 1, 391–403. [CrossRef] [Google Scholar]
  • Bergeron V. (2003) Antimousses et agents démoussants – Mécanismes d’action – Mise en œuvre industrielle, Techniques de l’Ingénieur, Traité génie des procédés J-2-205, J-2-206, J-2-207. [Google Scholar]
  • Beneventi D., Carre B., Gandini A. (2001) Role of surfactant structure on surface and foaming properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects 189, 65–73. [CrossRef] [Google Scholar]
  • Hollinger H.B. (1991) Thermodynamics of foam, Journal of Colloid and Interface Science 143, 1, 278–286. [CrossRef] [Google Scholar]
  • Schramm L.L. (1994) Foams: Fundamentals and Applications in the Petroleum Industry, American Chemical Society, Washington D.C. [CrossRef] [Google Scholar]
  • Morrison I.D. (1996) Ross’s rule: Sydney Ross and the phase diagram, Colloids and Surfaces A: Physicochemical and Engineering Aspects 118, 257–261. [CrossRef] [Google Scholar]
  • Morrison I.D., Ross S. (1983) The Equation of State of a Foam, Journal of Colloid and Interface Science 95, 1, 97–101. [CrossRef] [Google Scholar]
  • Friberg S.E. (2010) Foams from non-aqueous systems, Current Opinion in Colloid and Interface Science 15, 359–364. [CrossRef] [Google Scholar]
  • Sanders P.A. (1970) Stabilization of Aerosol Emulsions and Foams, Journal of the Society of Cosmetic Chemists 21, 377–391. [Google Scholar]
  • Shrestha R.G., Shrestha L.K., Solans C., Gonzalez C., Aramaki K. (2010) Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system, Colloids and Surfaces A: Physicochemical and Engineering Aspects 353, 157–165. [CrossRef] [Google Scholar]
  • Shrestha L.K., Shrestha R.G., Solans C., Aramaki K. (2007) Effect of water on foaming properties of diglycerol fatty acid ester-oil system, Langmuir 23, 13, 6918–6926. [CrossRef] [PubMed] [Google Scholar]
  • Shrestha L.K., Aramaki K., Kato H., Takase Y., Kunieda H. (2006) Foaming properties of monoglycerol fatty acid ester in nonpolar oil systems, Langmuir 22, 8337–8345. [CrossRef] [PubMed] [Google Scholar]
  • Callaghan I.C., McKechnie A.L., Ray J.E., Wainwright J.C. (1985) Identification of crude oil components responsible for foaming, Society of Petroleum Engineers Journal 25, 2, 171–175. [CrossRef] [Google Scholar]
  • Mellema M., Benjamins J. (2004) Importance of the Marangoni effect in the foaming of hot oil with phospholipids, Colloids and Surfaces A: Physicochemical and Engineering Aspects 237, 113–118. [CrossRef] [Google Scholar]
  • Robb I.D. (1997) Specialist Surfactants, Blackie Academic and Professional, Chapman and Hall, London. [Google Scholar]
  • Bergeron V., Hanssen J.E., Shoghl F.N. (1997) Thin-film forces in hydrocarbon foam films and their application to gas-blocking foams in enhanced oil recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects 123-124, 609–622. [CrossRef] [Google Scholar]
  • Zaki N.N., Poindexter M.K., Kilpatrick P.K. (2002) Factors contributing to petroleum foaming. 2. Synthetic crude oil systems, Energy and Fuels 16, 711–717. [CrossRef] [Google Scholar]
  • Adil I., Maini B.B. (2007) Role of asphaltenes in foamy oil flow, Journal of Canadian Petroleum Technology 46, 4, 18–23. [CrossRef] [Google Scholar]
  • Bauget F., Langevin D., Lenormand R. (2001) Dynamic surface properties of asphaltenes and resins at the oil-air interface, Journal of Colloid and Interface Science 239, 501–508. [CrossRef] [PubMed] [Google Scholar]
  • Ross S., Nishioka G. (1975) Foaminess of binary and ternary solutions, The Journal of Physical Chemistry 79, 15, 1561–1565. [CrossRef] [Google Scholar]
  • Shrestha L.K., Shrestha R.G., Sharma S.C., Aramaki K. (2008) Stabilization of non-aqueous foam with lamellar liquid crystal particle in diglycerol monolaurate/olive oil system, Journal of Colloid and Interface Science 328, 172–179. [CrossRef] [PubMed] [Google Scholar]
  • Friberg S.E., Greene B. (1984) A nonaqueous foam with excellent stability, Journal of Colloid and Interface Science 101, 2, 593–595. [CrossRef] [Google Scholar]
  • Friberg S.E., Blute E., Stenius P. (1989) Foam stability in a glycerol system, Journal of Colloid and Interface Science 127, 2, 573–582. [CrossRef] [Google Scholar]
  • Bikerman J.J. (1973) Foams, Springler-Verlag, Berlin. [CrossRef] [Google Scholar]
  • Binks B.P. (2002) Particles as surfactants – similarities and differences, Current Opinion in Colloid and Interface Science 7, 21–41. [CrossRef] [Google Scholar]
  • Binks B.P., Horozov T.S. (2006) Colloidal Particles at Liquid Interfaces, Cambridge University Press, Cambridge, ISBN 978-0-521-84846-6. [CrossRef] [Google Scholar]
  • Binks B.P., Rocher A., Kirkland M. (2011) Oil foams stabilised solely by particles, Soft Matter 7, 1800–1808. [CrossRef] [Google Scholar]
  • Binks B.P., Davies C.A., Fletcher P.D.I., Sharp E.L. (2010) Non-aqueous foams in lubricating oil systems, Colloids and Surfaces A: Physicochemical and Engineering Aspects 360, 198–204. [CrossRef] [Google Scholar]
  • Kichkin G.I. (1966) Foam formation in Lubricating Oils, Chemistry and Technology of Fuels and Oils 2, 4, 272–275. [CrossRef] [Google Scholar]
  • Totten G.E., Vestbrook S.R., Shah R.J. (2003) Fuel and Lubricants Handbook: Technology, Properties, Performance, and Testing, ASTM Manual Series: MNL37WCD, ASTM International, West Conshohocken, PA, ISBN 0-8031-2096-6. [CrossRef] [Google Scholar]
  • Sepulveda J.J., Falana O.M., Kakadjian S., Morales J.D., Zamora F., Dibiasio M.A., Marshall E., Shirley G. (2008) Oil-Based Foam and Proper Underbalanced-Drilling Practices Improve Drilling Efficiency in a Deep Gulf Coast Well, SPE Annual Technical Conference and Exhibition, SPE 115536-MS, Denver, Colorado, USA, 21-24 Sept. [Google Scholar]
  • Chin R.W., Inlow H.L., Keja T., Hebert P.B., Bennett J.R., Yin T.C. (1999) Chemical defoamer reduction with new internals in the Mars TLP Separators, SPE Annual Technical Conference and Exhibition, SPE paper 56705, Houston, Texas, 3-6 Oct. [Google Scholar]
  • Callaghan I.C., Gould C.M., Reid A.J., Seaton D.H. (1985) Crude-oil foaming problems at the Sullom Voe Terminal, Journal of Petroleum Technology 37, 12, 2211–2218. [CrossRef] [Google Scholar]
  • Shaban H.I. (1995) A study of foaming and carry-over problems in oil and gas separators, Gas Separation and Purification 9, 2, 81–86. [CrossRef] [Google Scholar]
  • Abivin P., Henaut I., Argillier J.-F., Moan M. (2009) Rheological behaviour of foamy oils, Energy and Fuels 23, 1316–1322. [CrossRef] [Google Scholar]
  • Abivin P., Henaut I., Chaudemanche C., Argillier J.F., Chinesta F., Moan M. (2009) Dispersed systems in heavy crude oils, Oil and Gas Science and Technology 64, 5, 557–570. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Arora P., Kovscek A.R. (2001) Mechanistic modelling of solutions gas drive in viscous oils, 2001 SPE International Thermal Operations and heavy oil Symposium, SPE paper 69717, Margarita Island, Venezuela, 12-14 March. [Google Scholar]
  • Bondino I., McDougall S.R., Hamon G. (2009) Pore-scale modelling of the effect of viscous pressure gradients during heavy oil depletion experiments, Canadian International Petroleum Conference, Paper 2009-187, Calgary, Canada, 16-18 June. [Google Scholar]
  • Callaghan I.C., Neustadter E.L. (1981) Foaming of crude oils: a study of non-aqueous foam stability, Chemistry and Industry (London) 2, 53–57. [Google Scholar]
  • Huerta M., Otero C., Rico A., Jimenez I., Mirabal M., Rojas G. (1996) Understanding foamy oil mechanisms for heavy oil reservoirs during primary production, SPE Annual Technical Conference and Exhibition, SPE paper 36749, Denver, Colorado, 6-9 Oct. [Google Scholar]
  • Joseph D.D., Kamp A.M., Bai R. (2002) Modelling foamy oil flow in porous media, International Journal of Multiphase Flow 28, 1659–1686. [CrossRef] [Google Scholar]
  • Joseph D.D., Kamp A.M., Ko T., Bai R. (2003) Modelling foamy oil flow in porous media II: Nonlinear relaxation time model of nucleation, International Journal of Multiphase Flow 29, 1489–1502. [CrossRef] [Google Scholar]
  • Maini B.B., Busahmin B. (2010) Foamy oil flow and its role in heavy oil production, Porous Media and Its Application in Science, Engineering and Industry, 3rd International Conference, AIP Conferences Proceedings Vol. 1254, pp. 103-108, Montecatini, Italy, 20-25 June. [Google Scholar]
  • Marcano L., Gutierrez X., Perez B., Martínez E. (2009) Effect of some physicochemical variables on the formation and stability of foam in an oil-air system and their correlation with the formation of foamy crude oil, Latin American and Caribbean Petroleum Engineering Conference, SPE paper 123060, Cartagena de Indias, Colombia, 31 May-3 June. [Google Scholar]
  • Peng J., Tang G.-Q., Kovscek A.R. (2009) Oil chemistry and its impact on heavy oil solutions gas drive, Journal of Petroleum Science and Engineering 66, 47–59. [CrossRef] [Google Scholar]
  • Sheng J.J., Maini B.B., Hayes R.E., Tortike W.S. (1999) A non-equilibrium model to calculate foamy oil properties, Journal of Canadian Petroleum Technology 38, 4, 38–45. [CrossRef] [Google Scholar]
  • Sheng J.J., Maini B.B., Hayes R.E., Tortike W.S. (1997) Experimental study of foamy oil stability, Journal of Canadian Petroleum Technology 36, 4, 31–37. [CrossRef] [Google Scholar]
  • Wang J., Yuan Y., Zhang L., Wang R. (2009) The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive, Journal of Petroleum Science and Engineering 66, 69–74. [CrossRef] [Google Scholar]
  • Maini B.B. (2001) Foamy-Oil Flow, Journal of Petroleum Technology 53, 10, 54–64. [CrossRef] [Google Scholar]
  • Poindexter M.K., Zaki N.N., Kilpatrick P.K., Marsh S.C., Emmons D.H. (2002) Factors contributing to petroleum foaming. 1, Crude oil systems, Energy and Fuels 16, 700–710. [CrossRef] [Google Scholar]
  • George D.S., Hayat O., Kovscek A.R. (2005) A microvisual study of solutions-gas-drive mechanisms in viscous oils, Journal of Petroleum Science and Engineering 46, 101–119. [CrossRef] [Google Scholar]
  • Fraga A.K., Rezende D.A., Santos R.F., Mansur C.R.E. (2011) Method to evaluate foaming in petroleum, Brazilian Journal of Petroleum and Gas 5, 1, 25–33. [CrossRef] [Google Scholar]
  • Callaghan I.C., Gould C.M., Hamilton R.J., Neustadter E.L. (1983) The relationship between the dilatational rheology and crude oil foam stability. 1, Preliminary studies, Colloids and Surfaces 8, 17–28. [CrossRef] [Google Scholar]
  • Sheng J.J., Maini B.B., Hayes R.E., Tortike W.S. (1999) Critical Review of Foamy Oil Flow, Transport in Porous Media 35, 157–187. [CrossRef] [Google Scholar]
  • Pacho D., Davies G. (2003) Detection and monitoring of oil foams using raw capacitance data, Industrial and Engineering Chemistry Research 42, 3, 636–645. [CrossRef] [Google Scholar]
  • Cohen-Addad S., Höhler R., Pitois O. (2013) Flow in Foams and Flowing Foams, The Annual Review of Fluid Mechanics 45, 241–267. [CrossRef] [Google Scholar]
  • Fransen G., Carbajal R., Guevara I. (2009) Foam detection in process units, 2009 SPE Latin American and Caribbean Petroleum Engineering Conference, SPE paper 122236, Cartagena, Colombia, 31 May-3 June. [Google Scholar]
  • Barigou M. (2001) Foam rupture by mechanical and vibrational methods, Chemical Engineering Technology 24, 659–663. [CrossRef] [Google Scholar]
  • Bergeron V., Cooper P., Fischer C., Giermanska-Kahn J., Langevin D., Pouchelon A. (1997) Polydimethylsiloxane (PDMS)-based antifoams, Colloids and Surfaces A: Physicochemical and Engineering Aspects 122, 103–120. [CrossRef] [Google Scholar]
  • Colbert J.C. (1981) Foam and Emulsion Control Agents and Processes: Recent Developments, Noyes Data Corporation, Park Ridge, N.J. [Google Scholar]
  • Karakashev S.L., Grozdanova M.V. (2012) Foams and antifoams, Advances in Colloid and Interface Science 176-177, 1–17. [CrossRef] [PubMed] [Google Scholar]
  • Rezende D.A., Bittencourt R.R., Mansur C.R.E. (2011) Evaluation of the efficiency of polyether-based antifoams for crude oil, Journal of Petroleum Science and Engineering 76, 172–177. [CrossRef] [Google Scholar]
  • Wylde J.J. (2010) Successful field application of novel, non-silicone antifoam chemistries for high foaming heavy oil storage tanks in Northern Alberta, SPE Production and Operations 25, 1, 25–30. [Google Scholar]
  • Denkov N.D. (2004) Mechanisms of Foam Destruction by Oil-Based Antifoams, Langmuir 20, 9463–9505. [CrossRef] [PubMed] [Google Scholar]
  • Garret P.R. (1992) Defoaming. Theory and Industrial Applications, Surfactant Science Series 45, CRC, Marcel Dekker, New York, ISBN 0-8247-8770-6. [Google Scholar]
  • Hadjiiski A., Tcholakova S., Denkov N.D., Durbut P., Broze G., Mehreteab A. (2001) Effect of Oily Additives on Foamability and Foam Stability. 2, Entry Barriers, Langmuir 17, 7011–7021. [CrossRef] [Google Scholar]
  • Luben A.S., Denkov N.D., Surcheva I., Durbut P., Broze G., Mehreteab A. (2001) Effect of Oily Additives on Foamability and Foam Stability. 1, Role of Interfacial Properties, Langmuir 17, 6999–7010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.