- Dry M.E. (2002) The Fischer-Tropsch process: 1950-2000, Catal. Today 71, 227. [Google Scholar]
- Khodakov A.Y., Chu W., Fongarland P. (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107, 1692-1744. [Google Scholar]
- Storsæter S.,Tøtdal B.,Walmsley J.C.,Tanem B.S.,Holmen A. (2005) Characterization of alumina-, silica-, and titaniasupported cobalt Fischer-Tropsch catalysts, J. Catal. 236, 139. [CrossRef] [Google Scholar]
- Concepción P.,López C.,Martínez A.,Puntes V.F. (2004) Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer-Tropsch synthesis reaction, J. Catal. 228, 321. [CrossRef] [Google Scholar]
- Liu Y.,Chen J.,Fang K.,Wang Y.,Sun Y. (2007) A large pore-size mesoporous zirconia supported cobalt catalyst with good performance in Fischer-Tropsch synthesis, Catal. Commun. 8, 945. [CrossRef] [Google Scholar]
- Martínez A.,López C.,Márquez F.,Díaz I. (2003) Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters, J. Catal. 220, 486. [CrossRef] [Google Scholar]
- Kraum M.,Baerns M. (1999) Fischer-Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance, Appl. Catal. A-Gen. 186, 189. [CrossRef] [Google Scholar]
- Xu D.,Li W.,Duan H.,Ge Q.,Xu H. (2005) Reaction performance and characterization of Co/Al2O3 Fischer-Tropsch catalysts promoted with Pt, Pd and Ru, Catal. Lett. 102, 229. [CrossRef] [Google Scholar]
- Zhang J.,Chen J.,Ren J.,Sun Y. (2003) Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis, Appl. Catal. A-Gen. 243, 121. [Google Scholar]
- Chernavskii P.A.,Khodakov A.Y.,Pankina G.V.,Girardon J.-S.,Quinet E. (2006) In situ characterization of the genesis of cobalt metal particles in silica- supported Fischer-Tropsch catalysts using Foner magnetic method, Appl. Catal. A-Gen. 306, 108-119. [CrossRef] [Google Scholar]
- de la Pena O'Shea V.A., Homs N., Fierro J.L.G., Ramirez de la Piscina P. (2006) Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer-Tropsch synthesis, Catal. Today 114, 422-427. [CrossRef] [Google Scholar]
- Elbashir N.O.,Dutta P.,Manivannan A.,Seehra M.S.,Roberts C.B. (2005) Impact of cobalt-based catalyst characteristics on the performance of conventional gas-phase and supercritical-phase Fischer-Tropsch synthesis, Appl. Catal. 285, 169-180. [CrossRef] [Google Scholar]
- Enache D.,Rebours B.,Roy-Auberger M.,Revel R. (2002) In Situ XRD Study of the Influence of Thermal Treatment on the Characteristics and the Catalytic Properties of Cobalt-Based Fischer-Tropsch Catalysts, J. Catal. 205, 346-353. [Google Scholar]
- Srinivasan R., De Angelis R.J.,Reucroft P.J.,Dhere A.G.,Bentley J. (1989) Structural characterization of cobalt catalysts on a silica support, J. Catal. 116, 144-163. [CrossRef] [Google Scholar]
- Bezemer G.L.,Radstake P.B.,Koot V., van Dillen A.J.,Geus J.W., de Jong K.P. (2006) Preparation of Fischer-Tropsch cobalt catalysts supported on carbon nanofibers and silica using homogeneous deposition – precipitation, J. Catal. 237, 291-302. [CrossRef] [Google Scholar]
- Kala S.,Mehta B.R. (2007) Size-dependent structural, optical and hydrogenation properties of Pr nanoparticle layers, J. Alloy. Compd. 431, 10-15. [CrossRef] [Google Scholar]
- Gailhanou M., Dubuisson J.M., Ribbens M., Roussier L.,Bétaille D.,Créoff M.,Lemonnier M.,Denoyer J.,Bouillot C.,Jucha A.,Lena A.,Idir M.,Bessière M.,Thiaudière D.,Hennet L.,Landron C.,Coutures J.P. (2001) H10: A materials and high temperature beamline at LURE/DCI, NIM B 467-468, 745. [Google Scholar]
- Ducreux O.,Lynch J.,Rebours B.,Roy M.,Chaumette P. (1998) In situ characterisation of cobalt base Fischer-Tropsch catalysts: a new approach to the active phase, Stud. Surf. Sci. Catal. 119, 125-130. [Google Scholar]
- Longo A.,Martorana A. (2008) Distorted f.c.c. arrangement of gold nanoclusters: a model of spherical particles with microstrains and stacking faults, J. Appl. Cryst. 41, 446. [CrossRef] [Google Scholar]
- Sasaki S. (1983) KEK Report 83-82, Nat. Lab. for High Energy Physics, Tsukuba, Japan. [Google Scholar]
- Treacy M.M.J., Newsam J.M., Deem M.W. (1991) A General Recursion Method for Calculating Diffracted Intensities from Crystals Containing Planar Faults, Proc. R. Soc. Lond. A 443, 499. [Google Scholar]
- Khodakov A.,Ducreux O.,Lynch J.,Rebours B.,Chaumette P. (1999) Structural Modification of Cobalt Catalysts: Effect of Wetting Studied by X-Ray and Infrared Techniques, Oil Gas Sci. Technol. – Rev. IFP 54, 525-536. [Google Scholar]
- Khodakov A.,Lynch J.,Bazin D.,Rebours B.,Zanier N.,Moisson B.,Chaumette P. (1997) Reducibility of Cobalt Species in Silica-Supported Fischer-Tropsch Catalysts, J. Catal. 168, 16. [CrossRef] [Google Scholar]
- Weller S.,Hofer L.J.E.,Anderson R.B. (1948) Role of Bulk Cobalt Carbide in the Fischer-Tropsch Synthesis, J. Am. Chem. Soc. 70, 799-801. [CrossRef] [Google Scholar]
- Jianmin X., Ding,Yunjie D.,Tao W.,Li Y.,Weimiao C.,Hejun Z.,Yuan L. (2005) The formation of Co2C species in activated carbon supported cobalt-based catalysts and its impact on Fischer-Tropsch reaction, Catal. Lett. 102, 265-269. [CrossRef] [Google Scholar]
- For a review of the surface carbide mechanism see: van der Laan G.,Beenackers A.A.C.M. (1999) Kinetics and Selectivity of the Fischer – Tropsch Synthesis: A Litterature Review, Catal. Rev. 41, 255. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 1, January-February 2009
Dossier: The Fischer-Tropsch Process
|
|
---|---|---|
Page(s) | 49 - 62 | |
DOI | https://doi.org/10.2516/ogst:2008039 | |
Published online | 28 October 2008 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.