Dossier: The Fischer-Tropsch Process
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 1, January-February 2009
Dossier: The Fischer-Tropsch Process
Page(s) 25 - 48
DOI https://doi.org/10.2516/ogst/2008050
Published online 19 February 2009
  • Khodakov A.Y.,Chu W.,Fongarland P. (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107, 1692-1744. [CrossRef] [PubMed] [Google Scholar]
  • Iglesia E. (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal. A-Gen. 161, 59-78. [CrossRef] [Google Scholar]
  • Dry M. (2002) The Fischer-Tropsch process: 1950-2000, Catal. Today 71, 227-241. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Lunin V.V. (1993) Oxide-oxide interaction in Ni, Co, and Fe supported catalysts, Kinet. Catal.+ 34, 470-477. [Google Scholar]
  • http://www.iupac.org/goldbook/T06395.pdf. [Google Scholar]
  • Selwood P.W. (1975) Chemisorption and Magnetization, Academic Press, New York. [Google Scholar]
  • Richardson J.T. (1978) Magnetism and catalysis, J. Appl. Phys. 49, 1781-1786. [CrossRef] [Google Scholar]
  • Dalmon J.-A. (1994) Catalysts Characterization, Physical Techniques for Solid Materials, Plenum, New York, pp. 585-609. [Google Scholar]
  • Weiss P.,Forrer R. (1926) Magnetization and Magnetocaloric Phenomena of Nickel, Ann. Phys. 5, 153-213. [Google Scholar]
  • Foner S. (1959) Versatile and Sensitive Vibrating-Sample Magnetometer, Rev. Sci. Instrum. 30, 548-557. [CrossRef] [Google Scholar]
  • Chernavskii P.A. (2001) Topochemical processes in metal supported catalysts, Dr. Sci. thesis, Moscow State University. [Google Scholar]
  • Petrov Y.I. (1982) Physics of small particles, Moscow, Nauka, p. 327. [Google Scholar]
  • Frenkel J.,Dorfman J. (1930) Spontaneous and Induced Magnetisation in Ferromagnetic Bodies, Nature 126, 274-275. [CrossRef] [Google Scholar]
  • Kondorskii E.I. (1952) On the theory of single-domain particles, Doklady Academii Nauk SSSR 82, 365-368. [Google Scholar]
  • Kondorskii E.I. (1978) Micromagnetism and remagnetization of quasi-single-domain particles, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 42, 8, 1638-1645. [Google Scholar]
  • Brown W. F. Jr. (1963) Micromagnetics, Wiley-Inter., N.Y. [Google Scholar]
  • Kneller E. (1969) In Magnetism and Metallurgy, Academic Press, N.Y., Vol. 1, p. 365. [Google Scholar]
  • Sort J.,Suriñach S.,Muñoz J.S.,Baró M.D.,Wojcik M.,Jedryka E.,Nadolski S.,Sheludko N.,Nogués J. (2003) Role of stacking faults in the structural and magnetic properties of ball-milled cobalt, Phys. Rev. B 68, 014421, 7 p. [CrossRef] [Google Scholar]
  • Pelecky D.L.,Rieke D.R. (1996) Magnetic Properties of Nanostructured Materials, Chem. Mater. 8, 1770-1783. [CrossRef] [Google Scholar]
  • Stoner E.C.,Wohlfarth E.P. (1948) A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Philos. T. Roy. Soc. A 240, 599-642. [CrossRef] [Google Scholar]
  • Chen C.,Kitakami O.,Shimada Y.J. (1998) Particle size effects and surface anisotropy in Fe-based granular films, J. Appl. Phys. 84, 2184-2188. [CrossRef] [Google Scholar]
  • Neel L.C.R. (1949) Influence des fluctuations thermiques a l'aimantation des particules ferromagnétiques, C. R. Hebd. Seances Acad. Sci. 228, 664-668. [Google Scholar]
  • Weil L. (1954) Structure of catalysts and ferromagnetic properties at very low temperatures, J. Chim. Phys. Physico-Chimie Bio. 51, 715-717. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wohlfarth E.P. (1980) The magnetic field dependence of the susceptibility peak of some spin glass materials, J. Phys. F: Met. Phys. 10, L241-L246. [CrossRef] [Google Scholar]
  • Bean C.P.,Livingston J.D. (1959) Superparamagnetism, J. Appl. Phys. 30, S120-S129. [CrossRef] [Google Scholar]
  • Chen J.P.,Sorensen C.M.,Klabunde K.J. (1995) Enhanced magnetization of nanoscale colloidal cobalt particles, Phys. Rev. B 51, 11527-11532. [CrossRef] [Google Scholar]
  • Billas M.L.,Chatelain A., de Herr W.A. (1994) Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters, Science 265, 1682-1684. [CrossRef] [PubMed] [Google Scholar]
  • Sohl H.,Bertram H.N. (1997) Localized surface nucleation of magnetization reversal, J. Appl. Phys. 82, 6128-6137. [CrossRef] [Google Scholar]
  • Primet M.,Dalmon J.A.,Martin G.A. (1977) Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195-373 K range studied by infrared spectroscopy and magnetic methods, J. Catal. 46, 25-36. [CrossRef] [Google Scholar]
  • Martin G.A. (1981) Détermination des tailles de particules métalliques et de leur distribution en catalyse hétérogène, Rev. Phys. Appl. 16, 181-192. [CrossRef] [EDP Sciences] [Google Scholar]
  • Estournes C.,Lutz T.,Happich J.,Quaranta T.,Wissler P.,Guille J.L. (1997) Nickel nanoparticles in silica gel: Preparation and magnetic properties, J. Magn. Magn. Mater. 173, 83-92. [CrossRef] [Google Scholar]
  • Richardson J.T.,Desai P. (1976) Ultrahigh magnetic field measurements of nickel crystallite size distributions, J. Catal. 42, 294-302. [CrossRef] [Google Scholar]
  • Potton J.A.,Daniell G.J.,Eastop A.D.,Kitching M.,Melville D.,Poslad S.,Rainford B.D.,Stanley H. (1983) Ferrofluid particle size distributions from magnetisation and small angle neutron scattering data, J. Magn. Magn. Mater. 39, 95-98. [CrossRef] [Google Scholar]
  • Skilling J.,Bryan R.K. (1984) Maximum-entropy image-reconstruction – general algoritm, Mon. Not. R. Astron. Soc. 211, 111. [NASA ADS] [CrossRef] [Google Scholar]
  • Zolla H.G.,Spaepen F. (1995) Size distribution of Ni precipitates in Ag-Ni alloys determined by maximum entropy analysis of magnetization curves, Mater. Sci. Eng. A 204, 71-75. [CrossRef] [Google Scholar]
  • Attila Kákay,Gutowski M.W.,Takacs L.,Franco V.,Varga L.K. (2004) Langevin granulometry of the particle size distribution, J. Phys. A: Math. Gen. 37, 6027-6042 [CrossRef] [Google Scholar]
  • Lermontov A., Dalmon J.-A., Miachon S., van Berge P.J., van de Loosdrecht J. (2002) TEM and magnetic characterization of well-dispersed Co/SiO2 catalysts. Abstract CATSA 2002. [Google Scholar]
  • De Montgolfier P.,Martin G.A.,Dalmon J.-A. (1973) Granulometry and metallic mass of finely divided ferromagnetic catalyzers calculated using magnetization/magnetic field curves, J. Phys. Chem. Solids 34, 801-812. [CrossRef] [Google Scholar]
  • Dalmon J.-A.,Martin G.,Imelik B. (1973) Basic silicate of cobalt tale and antigorite – synthesis, morphologie, thermal decomposotion and reduction by hydrogen- granulometric study of cobalt on silica catalysts thus obtained, J. Chim. Phys. Physico-Chimie Bio 70, 214-224. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kokorin V.V.,Perekos A.E.,Chuistov K.V. (1977) Magnetostatic interaction of ferromagnetic phase particles in non-ferromagnetic matrix, Fizika Metallov i Metallovedenie 43, 966-971. [Google Scholar]
  • Venttsel E.C., Ovcharov L.A. (1969) Theory of probability, Moscow, Nauka, p. 364. [Google Scholar]
  • Chernavskii P.A. (2005) Preparation of Fischer-Tropsch catalysts, Kinetics Catal. 46, 634-640. [CrossRef] [Google Scholar]
  • Perov N.S.,Sudarikova N.Yu.,Bagrets A.A. (2003) The magnetic properties of the systems of the ultra-fine particles, J. Magn. (Korean Magn. Soc.) 8, 1, 7-12. [Google Scholar]
  • Perov N.S., Radkovskaya A.A. (2000) A Vibrating Sample Anisometer, Proceeding of 1 & 2 Dimensional Magnetic Measurement and Testing, 20-21 Sept. 2000, Bad Gastein, ISBN 3-902105, p. 104. [Google Scholar]
  • Yakushiji K.,Mitani S.,Takanashi K.,Ha J.-G.,Fujimori H. (2000) Composition dependence of particle size distribution and giant magnetoresistance in Co-Al-O granular films, J. Magn. Magn. Mater. 212, 75-81. [CrossRef] [Google Scholar]
  • Weissmuller J.,Michels A.,Barker J.G.,Wiedenmann A.,Erb U.,Shull R.D. (2001) Analysis of the small-angle neutron scattering of nanocrystalline ferromagnets using a micromagnetics model, Phys. Rev. B 63, 2144141-21441418. [CrossRef] [Google Scholar]
  • Brown W.F. Jr. (1969) The fundamental theorem of the theory of fine ferromagnetic particles, Ann. NY Acad. Sci. 147, 463-488. [CrossRef] [Google Scholar]
  • Dormann J.L., Fiorani D,Tronc E. (1997) Magnetic relaxation in fine-particle systems, Adv. Chem. Phys. 98, 283-494. [Google Scholar]
  • Dalmon J.-A.,Martin G.A.,Imelik B. (1974) Adsorptions de H2 et de O2 sur des alliages Ni—Cu divisés supportés sur SiO2, etudiées par mesure d'aimantation à saturation, Surf. Sci. 41, 587-590. [CrossRef] [Google Scholar]
  • Selwood P.W. (1975) Chemisorption and Magnetization, Academic Press, New York. [Google Scholar]
  • Martin G.A.,Imelik B. (1974) Adsorption of hydrocarbons and various gases on Ni-SiO2 catalysts studied by high field magnetic methods, Surf. Sci. 42, 157-172 [CrossRef] [Google Scholar]
  • Dalmon J.-A.,Primet M.,Martin G.A.,Imelik B. (1975) Magnetic and infrared study of CO chemisorption on silica supported nickel-copper alloys, Surf. Sci. 50, 95-108. [CrossRef] [Google Scholar]
  • Reuel R.C.,Bartholomew C.H. (1984) The stoichiometries of H2 and CO adsorptions on cobalt: Effects of support and preparation, J. Catal. 85, 63-77. [CrossRef] [Google Scholar]
  • Zowtiak J.M.,Bartholomew C.H. (1983) The kinetics of H2 adsorption on and desorption from cobalt and the effects of support thereon, J. Catal. 83, 107-120. [CrossRef] [Google Scholar]
  • Abeledo C.R.,Selwood P.W.J. (1962) Chemisorption of hydrogen on cobalt, J. Chem. Phys. 37, 2709. [CrossRef] [Google Scholar]
  • Dalmon J.-A.,Martin G.A.,Imelik B. (1974) Adsorption of H2 on Ni-Cu alloys studied by magnetic measurements, Jpn. J. Appl. Phys. Suppl. 2, Part 2, 261-264. [Google Scholar]
  • Dumesic J.A.,Topsoe H.,Boudart, M. (1975) Surface, catalytic and magnetic properties of small iron particles: III. Nitrogen induced surface reconstruction, J. Catal. 37, 513-522. [CrossRef] [Google Scholar]
  • Dutartre R.,Bussière P.,Dalmon J.-A.,Martin G.A. (1979) Activation of hydrogen on Fe/MgO catalysts studied by magnetic methods and Mössbauer spectroscopy, J. Catal. 59, 383-394 [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Kiselev V.V.,Kuprin A.P.,Grechenko A.N.,Baranaova L.I.,Lunin V.V. (1991) Characteristics of hydrogen reduction of iron-oxide applied on silica-gel, Russ. J. Phys. Chem. 65, 1675-1679. [Google Scholar]
  • Chernavskii P.A.,Kiselev V.V.,Lunin V.V. (1992) Mechanism of the reduction of iron-oxides applied on silica gel, Russ. J. Phys. Chem. 66, 2712-2718. [Google Scholar]
  • Chernavskii P.A.,Pankina G.V.,Zavalishin I.N.,Lunin V.V. (1994) The kinetics of reduction of iron oxides supported on SiO2, Al2O3, ZrO2 by hydrogen, Kinetics Catal. 35, 111-113. [Google Scholar]
  • Chernavskii P.A.,Pankina G.V.,Lunin V.V. (1998) Temperature-programmed reduction of Fe2O3/Al2O3 and Pt/Fe2O3/Al2O3 catalysts, Russ. J. Phys. Chem. 72, 2086-2088. [Google Scholar]
  • Wielers A.F.H.,Kock A.J.H.M.,Hop C.E.C.A.,Geus J.W., van der Kraan A.M. (1989) The reduction behavior of silica-supported and alumina-supported iron catalysts: A Mössbauer and infrared spectroscopic study, J. Catal. 117, 1-18. [CrossRef] [Google Scholar]
  • Wang C.J.,Ekerdt J.G.J. (1983) Study of Fischer-Tropsch synthesis over Fe/SiO2: Reactive scavenging with pyridine and cyclohexene, J. Catal. 80, 172-187. [CrossRef] [Google Scholar]
  • Amelse J.A.,Butt J.B.,Schwartz L.H.J. (1978) Carburization of supported iron synthesis catalysts, J. Phys. Chem. 82, 558-563. [CrossRef] [Google Scholar]
  • Rozovskii A.Y. (1989) Heterogeneous catalytic reactions: Kinetics and macrokinetics, Moscow, Nauka, p. 323. [Google Scholar]
  • Bartolomew C.H. (1988) Hydrogen effect in catalysis. Fundamental and practical applications. Role of hydrogen in CO hydrogenation, Dekker, Basel, NY, p. 543. [Google Scholar]
  • Matsumoto H.,Bennett C.O. (1978) The transient method applied to the methanation and Fischer-Tropsch reactions over a fused iron catalyst, J. Catal. 53, 331-344. [CrossRef] [Google Scholar]
  • Loktev S.M.,Makarenkova L.I.,Slivinskii E.V.,Entin S.D. (1972) Thermomagnetic analysis of fused iron catalysts for synthesis of higher alcohols from carbon monoxide and hydrogen, Kinetics Catal. 13, 1042-1049. [Google Scholar]
  • Niemantsverdriet J.W., van der Kraan A.M., van Dijk W.L., van der Baan H.S. (1980) Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Moessbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements, J. Phys. Chem. 84, 3363-3370. [CrossRef] [Google Scholar]
  • Unmuth E.E.,Schwartz L.H.,Butt J.B. (1980) Iron alloy Fischer-Tropsch catalysts: I: Carburization studies of the Fe—Ni system, J. Catal. 63, 404-414. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Pankina G.V.,Lunin V.V. (1996) Carbidizing of iron deposited on SiO2 and Al2O3 in Fischer-Tropsch synthesis, Russ. J. Phys. Chem. 70, 1016-1021. [Google Scholar]
  • Chernavskii P.A.,Lunin V.V. (1996) Kinetics of Iron Carbide Formation in Hydrogenation of CO over a Potassium-promoted Fe/SiO2 Catalyst, Kinetics Catal. 37, 850-854. [Google Scholar]
  • Chernavskii P.A. (1997) The carburization kinetics of iron-based Fischer-Tropsch synthesis catalysts, Catal. Lett. 45, 215-219. [CrossRef] [Google Scholar]
  • Ichiyanagi Y.,Yamada S. (2005) The size-dependent magnetic properties of Co3O4 nanoparticles, Polyhedron 24, 2813-2816. [CrossRef] [Google Scholar]
  • Romero J., Jiménez J., DelCerro J. (2004) Calorimetric investigation on the paramagnetic-antiferromagnetic phase transition in CoO, J. Magn. Magn. Mater. 280, 257-263. [CrossRef] [Google Scholar]
  • Bedel L.,Roger A.C.,Estournes C.,Kiennemann A. (2003) Co0 from partial reduction of La(Co,Fe)O3 perovskites for Fischer-Tropsch synthesis, Catal. Today 85, 207-218. [CrossRef] [Google Scholar]
  • Bedel L.,Roger A.-C.,Rehspringer J.-L.,Zimmermann Y.,Kiennemann A. (2005) La(1-y)Co0.4Fe0.6OFormula perovskite oxides as catalysts for Fischer-Tropsch synthesis, J. Catal. 235, 279-294. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Khodakov A.Y.,Pankina G.V.,Girardon J.-S.,Quinet E. (2006) In situ characterization of the genesis of cobalt metal particles in silica-supported Fischer-Tropsch catalysts using Foner magnetic method, Appl. Catal. A 306, 108-119. [CrossRef] [Google Scholar]
  • Chernavskii P.A.,Lermontov A.S.,Pankina G.V.,Torbin S.N.,Lunin V.V. (2002) Effect of the ZrO2 pore structure on the reduction of a supported cobalt oxide in catalysts for Fischer-Tropsch synthesis, Kinetics Catal. 43, 268-274 [CrossRef] [Google Scholar]
  • Chu W.,Chernavskii P.A.,Gengembre L.,Pankina G.A.,Fongarland P.A.,Khodakov A.Y. (2007) Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts, J. Catal. 252, 215-230. [CrossRef] [Google Scholar]
  • Girardon J.-S.,Lermontov A.S.,Gengembre L.,Chernavskii P.A.,Griboval-Constant A.,Khodakov A.Y. (2005) Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts, J. Catal. 230, 339-352. [CrossRef] [Google Scholar]
  • Girardon J.-S.,Constant-Griboval A.,Gengembre L.,Chernavskii P.A.,Khodakov A.Y. (2005) Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer-Tropsch catalysts, Catal. Today 106, 161-165. [CrossRef] [Google Scholar]
  • Kissinger H.E. (1957) Reaction kinetics in differential thermal analysis, Anal. Chem. 29, 1703-1706. [CrossRef] [Google Scholar]
  • Grandvallet P., Courty Ph., Freund E. (1984) Characterization and catalytic properties of copper-cobalt-aluminium-zinc mixed phases for higher alcohol synthesis, Proc. of the 8th Int. Cong. on Catal., Springer Verlag, Berlin, II, pp. 81-92. [Google Scholar]
  • Courty Ph.,Chaumette P.,Raimbault C.,Travers Ph. (1990) Production of methanol-higher alcohol mixtures from natural gas via syngas chemistry, Revue I.F.P. 45, 4, 561-578. [Google Scholar]
  • Dalmon J.-A.,Chaumette P.,Mirodatos C. (1992) Higher alcohols synthesis on cobalt based model catalysts, Catal. Today 15, 101-127. [CrossRef] [Google Scholar]
  • van de Loosdrecht J.,Balzhinimaev B.,Dalmon J.-A.,Niemantsverdriet J.W.,Tsybulya S.V.,Saib A.M., van Berge P.J.,Visagie J.L. (2007) Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation? Catal. Today 123, 293-302. [CrossRef] [Google Scholar]
  • Bremaud M.,Fongarland P.,Anfray J.,Jallais S.,Schweich D.,Khodakov A.Y. (2005) Influence of syngas composition on the transient behavior of a Fischer-Tropsch continuous slurry reactor, Catal. Today 106, 137-142. [CrossRef] [Google Scholar]
  • van Steen E., Clayes M., Dry M.E., van de Loosdrecht J.,Vilkoen E.L.,Visagie J.L. (2005) Stability of nanocrystals: Thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures, J. Phys. Chem. B 109, 3575-3677. [CrossRef] [PubMed] [Google Scholar]
  • Hauffe K. (1963) Reactions in solids and at their surface, Russian translation, Moscow, IL, Vol. 2, p. 275. [Google Scholar]
  • Cabrera N.,Mott N.F. (1948) The theory of the oxidation of metals, Rep. Prog. Phys. 12, 163-184. [CrossRef] [Google Scholar]
  • Barbier A.,Tuel A.,Arcon I.,Kodre A.,Martin G.A. (2001) Characterization and catalytic behavior of Co/SiO2 catalysts: Influence of dispersion in the Fischer-Tropsch reaction, J. Catal. 200, 106-116. [CrossRef] [Google Scholar]
  • Barbier A.,Hanif A.,Dalmon J.-A.,Martin G.A. (1998) Preparation and characterization of well-dispersed and stable Co/SiO2 catalysts using the ammonia method, Appl. Catal. AGen. 168, 333-343. [CrossRef] [Google Scholar]
  • Martin G.A., Dalmon J.-A., Mirodatos C. (1984) Particle sizesensitivity in catalysis by nickel: a statistical approach based on the combined effect of surface coverage and active dimension site, Proc. 8th Int. Cong. Catal., Berlin 1984, Dechema, IV, pp. 371-380. [Google Scholar]
  • Chu W.,Wang L.-N.,Chernavskii P.A.,Khodakov A.Y. (2008) Glow discharge plasma assisted design of cobalt catalysts for Fischer Tropsch synthesis, Angew. Chem. Int. Edit. 47, 5052-5055. [CrossRef] [Google Scholar]
  • Zhang Y.,Chu W.,Cao W.,Luo C.,Wen X.,Zhou K. (2000) A plasma-activated Ni/alpha-Al2O3 catalyst for the conversion of CH4 to syngas, Plasma Chem. Plasma P. 20, 137-144. [CrossRef] [Google Scholar]
  • Baker J.E.,Burch R.,Hibble S.J.,Loader P.K. (1990) Properties of silica-supported Cu-Co bimetallic catalysts in the synthesis of higher alcohols, Appl. Catal. 65, 281-292. [CrossRef] [Google Scholar]
  • Khodakov A.,Griboval-Constant A.,Bechara R.,Villain F. (2001) Pore-size control of cobalt dispersion and reducibility in mesoporous silicas, J. Phys. Chem. B 105, 9805-9811. [CrossRef] [Google Scholar]
  • Khodakov A.,Lynch J.,Bazin D.,Rebours B.Zanier N.Moisson B.,Chaumette P. (1997) Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts, J. Catal. 168, 16-25. [CrossRef] [Google Scholar]
  • Sewell G.S., van Steen E.,O'Connor C.T. (1996) Use of TPR/TPO for characterization of supported cobalt catalysts, Catal. Lett. 37, 255-260. [CrossRef] [Google Scholar]
  • Pichon C.,Lynch J. (2005) Synchrotron radiation and oil industry research, Oil Gas Sci. Technol. 60, 735-746. [CrossRef] [EDP Sciences] [Google Scholar]
  • Newton M.A.,Dent A.J.,Fiddy S.G.,Jyoti B.,Evans J. (2007) Combining diffuse reflectance infrared spectroscopy (DRIFTS), dispersive EXAFS, and mass spectrometry with high time resolution: Potential, limitations, and application to the study of NO interaction with supported Rh catalysts, Catal. Today 126, 1-2, 64-72. [CrossRef] [Google Scholar]
  • Frahm R. (1988) Quick scanning EXAFS: First experiments, Nucl. Instrum. Meth. A 270, 2-3, 578-581. [CrossRef] [Google Scholar]
  • Williamson G.K.,Hall W.H. (1953) X-ray line broadening from filed aluminium and wolfram, Acta Metal. 1, 22-31. [CrossRef] [Google Scholar]
  • Lynch J. (2002) Development of Structural Characterisation Tools for Catalysts, Oil Gas Sci. Technol. 57, 281-305. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pan M.,Cowley J.M.,Chan I.Y. (1990) HREM imaging of small Pt clusters dispersed in Y-zeolites, Catal. Lett. 5, 1-11. [CrossRef] [Google Scholar]
  • Kerkhof F.P.J.,Moulijn J.A. (1979) Quantitative analysis of XPS intensities for supported catalysts, J. Phys. Chem. 83, 1612-1619. [CrossRef] [Google Scholar]
  • Kuipers H.P.C.E., Van Leuven H.C.E.,Visser W.M. (1986) The characterization of heterogeneous catalysts by XPS based on geometrical probability. 1. Monometallic catalysts, Surf. Interface Anal. 8, 235-242. [CrossRef] [Google Scholar]
  • Somorjai G.A. (1994) Introduction to Surface Chemistry and Catalysis, Willey, New York. [Google Scholar]
  • Benfield R. (1992) Mean coordination numbers and the nonmetal metal transition in clusters, J. Chem. Soc. Faraday Trans. 88, 8, 1107-1110. [CrossRef] [Google Scholar]
  • Chu W.,Chernavskii P.A.,Gengembre L.,Pankina G.A.,Fongarland P.,Khodakov A.Y. (2007) Cobalt Species in Promoted Cobalt Alumina-Supported Fischer-Tropsch Catalysts, J. Catal. 252, 215-230 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.