Dossier: The Fischer-Tropsch Process
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 1, January-February 2009
Dossier: The Fischer-Tropsch Process
Page(s) 25 - 48
DOI https://doi.org/10.2516/ogst/2008050
Published online 19 February 2009
  • Khodakov A.Y.,Chu W.,Fongarland P. (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107, 1692-1744. [CrossRef]
  • Iglesia E. (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Appl. Catal. A-Gen. 161, 59-78. [CrossRef]
  • Dry M. (2002) The Fischer-Tropsch process: 1950-2000, Catal. Today 71, 227-241. [CrossRef]
  • Chernavskii P.A.,Lunin V.V. (1993) Oxide-oxide interaction in Ni, Co, and Fe supported catalysts, Kinet. Catal.+ 34, 470-477.
  • http://www.iupac.org/goldbook/T06395.pdf.
  • Selwood P.W. (1975) Chemisorption and Magnetization, Academic Press, New York.
  • Richardson J.T. (1978) Magnetism and catalysis, J. Appl. Phys. 49, 1781-1786. [CrossRef]
  • Dalmon J.-A. (1994) Catalysts Characterization, Physical Techniques for Solid Materials, Plenum, New York, pp. 585-609.
  • Weiss P.,Forrer R. (1926) Magnetization and Magnetocaloric Phenomena of Nickel, Ann. Phys. 5, 153-213.
  • Foner S. (1959) Versatile and Sensitive Vibrating-Sample Magnetometer, Rev. Sci. Instrum. 30, 548-557. [CrossRef]
  • Chernavskii P.A. (2001) Topochemical processes in metal supported catalysts, Dr. Sci. thesis, Moscow State University.
  • Petrov Y.I. (1982) Physics of small particles, Moscow, Nauka, p. 327.
  • Frenkel J.,Dorfman J. (1930) Spontaneous and Induced Magnetisation in Ferromagnetic Bodies, Nature 126, 274-275. [CrossRef]
  • Kondorskii E.I. (1952) On the theory of single-domain particles, Doklady Academii Nauk SSSR 82, 365-368.
  • Kondorskii E.I. (1978) Micromagnetism and remagnetization of quasi-single-domain particles, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 42, 8, 1638-1645.
  • Brown W. F. Jr. (1963) Micromagnetics, Wiley-Inter., N.Y.
  • Kneller E. (1969) In Magnetism and Metallurgy, Academic Press, N.Y., Vol. 1, p. 365.
  • Sort J.,Suriñach S.,Muñoz J.S.,Baró M.D.,Wojcik M.,Jedryka E.,Nadolski S.,Sheludko N.,Nogués J. (2003) Role of stacking faults in the structural and magnetic properties of ball-milled cobalt, Phys. Rev. B 68, 014421, 7 p. [CrossRef]
  • Pelecky D.L.,Rieke D.R. (1996) Magnetic Properties of Nanostructured Materials, Chem. Mater. 8, 1770-1783. [CrossRef]
  • Stoner E.C.,Wohlfarth E.P. (1948) A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Philos. T. Roy. Soc. A 240, 599-642. [CrossRef]
  • Chen C.,Kitakami O.,Shimada Y.J. (1998) Particle size effects and surface anisotropy in Fe-based granular films, J. Appl. Phys. 84, 2184-2188. [CrossRef]
  • Neel L.C.R. (1949) Influence des fluctuations thermiques a l'aimantation des particules ferromagnétiques, C. R. Hebd. Seances Acad. Sci. 228, 664-668.
  • Weil L. (1954) Structure of catalysts and ferromagnetic properties at very low temperatures, J. Chim. Phys. Physico-Chimie Bio. 51, 715-717. [CrossRef] [EDP Sciences]
  • Wohlfarth E.P. (1980) The magnetic field dependence of the susceptibility peak of some spin glass materials, J. Phys. F: Met. Phys. 10, L241-L246. [CrossRef]
  • Bean C.P.,Livingston J.D. (1959) Superparamagnetism, J. Appl. Phys. 30, S120-S129. [CrossRef]
  • Chen J.P.,Sorensen C.M.,Klabunde K.J. (1995) Enhanced magnetization of nanoscale colloidal cobalt particles, Phys. Rev. B 51, 11527-11532. [CrossRef]
  • Billas M.L.,Chatelain A., de Herr W.A. (1994) Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters, Science 265, 1682-1684. [CrossRef] [PubMed]
  • Sohl H.,Bertram H.N. (1997) Localized surface nucleation of magnetization reversal, J. Appl. Phys. 82, 6128-6137. [CrossRef]
  • Primet M.,Dalmon J.A.,Martin G.A. (1977) Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195-373 K range studied by infrared spectroscopy and magnetic methods, J. Catal. 46, 25-36. [CrossRef]
  • Martin G.A. (1981) Détermination des tailles de particules métalliques et de leur distribution en catalyse hétérogène, Rev. Phys. Appl. 16, 181-192. [CrossRef] [EDP Sciences]
  • Estournes C.,Lutz T.,Happich J.,Quaranta T.,Wissler P.,Guille J.L. (1997) Nickel nanoparticles in silica gel: Preparation and magnetic properties, J. Magn. Magn. Mater. 173, 83-92. [CrossRef]
  • Richardson J.T.,Desai P. (1976) Ultrahigh magnetic field measurements of nickel crystallite size distributions, J. Catal. 42, 294-302. [CrossRef]
  • Potton J.A.,Daniell G.J.,Eastop A.D.,Kitching M.,Melville D.,Poslad S.,Rainford B.D.,Stanley H. (1983) Ferrofluid particle size distributions from magnetisation and small angle neutron scattering data, J. Magn. Magn. Mater. 39, 95-98. [CrossRef]
  • Skilling J.,Bryan R.K. (1984) Maximum-entropy image-reconstruction – general algoritm, Mon. Not. R. Astron. Soc. 211, 111. [NASA ADS] [CrossRef]
  • Zolla H.G.,Spaepen F. (1995) Size distribution of Ni precipitates in Ag-Ni alloys determined by maximum entropy analysis of magnetization curves, Mater. Sci. Eng. A 204, 71-75. [CrossRef]
  • Attila Kákay,Gutowski M.W.,Takacs L.,Franco V.,Varga L.K. (2004) Langevin granulometry of the particle size distribution, J. Phys. A: Math. Gen. 37, 6027-6042 [CrossRef]
  • Lermontov A., Dalmon J.-A., Miachon S., van Berge P.J., van de Loosdrecht J. (2002) TEM and magnetic characterization of well-dispersed Co/SiO2 catalysts. Abstract CATSA 2002.
  • De Montgolfier P.,Martin G.A.,Dalmon J.-A. (1973) Granulometry and metallic mass of finely divided ferromagnetic catalyzers calculated using magnetization/magnetic field curves, J. Phys. Chem. Solids 34, 801-812. [CrossRef]
  • Dalmon J.-A.,Martin G.,Imelik B. (1973) Basic silicate of cobalt tale and antigorite – synthesis, morphologie, thermal decomposotion and reduction by hydrogen- granulometric study of cobalt on silica catalysts thus obtained, J. Chim. Phys. Physico-Chimie Bio 70, 214-224. [CrossRef] [EDP Sciences]
  • Kokorin V.V.,Perekos A.E.,Chuistov K.V. (1977) Magnetostatic interaction of ferromagnetic phase particles in non-ferromagnetic matrix, Fizika Metallov i Metallovedenie 43, 966-971.
  • Venttsel E.C., Ovcharov L.A. (1969) Theory of probability, Moscow, Nauka, p. 364.
  • Chernavskii P.A. (2005) Preparation of Fischer-Tropsch catalysts, Kinetics Catal. 46, 634-640. [CrossRef]
  • Perov N.S.,Sudarikova N.Yu.,Bagrets A.A. (2003) The magnetic properties of the systems of the ultra-fine particles, J. Magn. (Korean Magn. Soc.) 8, 1, 7-12.
  • Perov N.S., Radkovskaya A.A. (2000) A Vibrating Sample Anisometer, Proceeding of 1 & 2 Dimensional Magnetic Measurement and Testing, 20-21 Sept. 2000, Bad Gastein, ISBN 3-902105, p. 104.
  • Yakushiji K.,Mitani S.,Takanashi K.,Ha J.-G.,Fujimori H. (2000) Composition dependence of particle size distribution and giant magnetoresistance in Co-Al-O granular films, J. Magn. Magn. Mater. 212, 75-81. [CrossRef]
  • Weissmuller J.,Michels A.,Barker J.G.,Wiedenmann A.,Erb U.,Shull R.D. (2001) Analysis of the small-angle neutron scattering of nanocrystalline ferromagnets using a micromagnetics model, Phys. Rev. B 63, 2144141-21441418. [CrossRef]
  • Brown W.F. Jr. (1969) The fundamental theorem of the theory of fine ferromagnetic particles, Ann. NY Acad. Sci. 147, 463-488. [CrossRef]
  • Dormann J.L., Fiorani D,Tronc E. (1997) Magnetic relaxation in fine-particle systems, Adv. Chem. Phys. 98, 283-494.
  • Dalmon J.-A.,Martin G.A.,Imelik B. (1974) Adsorptions de H2 et de O2 sur des alliages Ni—Cu divisés supportés sur SiO2, etudiées par mesure d'aimantation à saturation, Surf. Sci. 41, 587-590. [CrossRef]
  • Selwood P.W. (1975) Chemisorption and Magnetization, Academic Press, New York.
  • Martin G.A.,Imelik B. (1974) Adsorption of hydrocarbons and various gases on Ni-SiO2 catalysts studied by high field magnetic methods, Surf. Sci. 42, 157-172 [CrossRef]
  • Dalmon J.-A.,Primet M.,Martin G.A.,Imelik B. (1975) Magnetic and infrared study of CO chemisorption on silica supported nickel-copper alloys, Surf. Sci. 50, 95-108. [CrossRef]
  • Reuel R.C.,Bartholomew C.H. (1984) The stoichiometries of H2 and CO adsorptions on cobalt: Effects of support and preparation, J. Catal. 85, 63-77. [CrossRef]
  • Zowtiak J.M.,Bartholomew C.H. (1983) The kinetics of H2 adsorption on and desorption from cobalt and the effects of support thereon, J. Catal. 83, 107-120. [CrossRef]
  • Abeledo C.R.,Selwood P.W.J. (1962) Chemisorption of hydrogen on cobalt, J. Chem. Phys. 37, 2709. [CrossRef]
  • Dalmon J.-A.,Martin G.A.,Imelik B. (1974) Adsorption of H2 on Ni-Cu alloys studied by magnetic measurements, Jpn. J. Appl. Phys. Suppl. 2, Part 2, 261-264.
  • Dumesic J.A.,Topsoe H.,Boudart, M. (1975) Surface, catalytic and magnetic properties of small iron particles: III. Nitrogen induced surface reconstruction, J. Catal. 37, 513-522. [CrossRef]
  • Dutartre R.,Bussière P.,Dalmon J.-A.,Martin G.A. (1979) Activation of hydrogen on Fe/MgO catalysts studied by magnetic methods and Mössbauer spectroscopy, J. Catal. 59, 383-394 [CrossRef]
  • Chernavskii P.A.,Kiselev V.V.,Kuprin A.P.,Grechenko A.N.,Baranaova L.I.,Lunin V.V. (1991) Characteristics of hydrogen reduction of iron-oxide applied on silica-gel, Russ. J. Phys. Chem. 65, 1675-1679.
  • Chernavskii P.A.,Kiselev V.V.,Lunin V.V. (1992) Mechanism of the reduction of iron-oxides applied on silica gel, Russ. J. Phys. Chem. 66, 2712-2718.
  • Chernavskii P.A.,Pankina G.V.,Zavalishin I.N.,Lunin V.V. (1994) The kinetics of reduction of iron oxides supported on SiO2, Al2O3, ZrO2 by hydrogen, Kinetics Catal. 35, 111-113.
  • Chernavskii P.A.,Pankina G.V.,Lunin V.V. (1998) Temperature-programmed reduction of Fe2O3/Al2O3 and Pt/Fe2O3/Al2O3 catalysts, Russ. J. Phys. Chem. 72, 2086-2088.
  • Wielers A.F.H.,Kock A.J.H.M.,Hop C.E.C.A.,Geus J.W., van der Kraan A.M. (1989) The reduction behavior of silica-supported and alumina-supported iron catalysts: A Mössbauer and infrared spectroscopic study, J. Catal. 117, 1-18. [CrossRef]
  • Wang C.J.,Ekerdt J.G.J. (1983) Study of Fischer-Tropsch synthesis over Fe/SiO2: Reactive scavenging with pyridine and cyclohexene, J. Catal. 80, 172-187. [CrossRef]
  • Amelse J.A.,Butt J.B.,Schwartz L.H.J. (1978) Carburization of supported iron synthesis catalysts, J. Phys. Chem. 82, 558-563. [CrossRef]
  • Rozovskii A.Y. (1989) Heterogeneous catalytic reactions: Kinetics and macrokinetics, Moscow, Nauka, p. 323.
  • Bartolomew C.H. (1988) Hydrogen effect in catalysis. Fundamental and practical applications. Role of hydrogen in CO hydrogenation, Dekker, Basel, NY, p. 543.
  • Matsumoto H.,Bennett C.O. (1978) The transient method applied to the methanation and Fischer-Tropsch reactions over a fused iron catalyst, J. Catal. 53, 331-344. [CrossRef]
  • Loktev S.M.,Makarenkova L.I.,Slivinskii E.V.,Entin S.D. (1972) Thermomagnetic analysis of fused iron catalysts for synthesis of higher alcohols from carbon monoxide and hydrogen, Kinetics Catal. 13, 1042-1049.
  • Niemantsverdriet J.W., van der Kraan A.M., van Dijk W.L., van der Baan H.S. (1980) Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Moessbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements, J. Phys. Chem. 84, 3363-3370. [CrossRef]
  • Unmuth E.E.,Schwartz L.H.,Butt J.B. (1980) Iron alloy Fischer-Tropsch catalysts: I: Carburization studies of the Fe—Ni system, J. Catal. 63, 404-414. [CrossRef]
  • Chernavskii P.A.,Pankina G.V.,Lunin V.V. (1996) Carbidizing of iron deposited on SiO2 and Al2O3 in Fischer-Tropsch synthesis, Russ. J. Phys. Chem. 70, 1016-1021.
  • Chernavskii P.A.,Lunin V.V. (1996) Kinetics of Iron Carbide Formation in Hydrogenation of CO over a Potassium-promoted Fe/SiO2 Catalyst, Kinetics Catal. 37, 850-854.
  • Chernavskii P.A. (1997) The carburization kinetics of iron-based Fischer-Tropsch synthesis catalysts, Catal. Lett. 45, 215-219. [CrossRef]
  • Ichiyanagi Y.,Yamada S. (2005) The size-dependent magnetic properties of Co3O4 nanoparticles, Polyhedron 24, 2813-2816. [CrossRef]
  • Romero J., Jiménez J., DelCerro J. (2004) Calorimetric investigation on the paramagnetic-antiferromagnetic phase transition in CoO, J. Magn. Magn. Mater. 280, 257-263. [CrossRef]
  • Bedel L.,Roger A.C.,Estournes C.,Kiennemann A. (2003) Co0 from partial reduction of La(Co,Fe)O3 perovskites for Fischer-Tropsch synthesis, Catal. Today 85, 207-218. [CrossRef]
  • Bedel L.,Roger A.-C.,Rehspringer J.-L.,Zimmermann Y.,Kiennemann A. (2005) La(1-y)Co0.4Fe0.6OFormula perovskite oxides as catalysts for Fischer-Tropsch synthesis, J. Catal. 235, 279-294. [CrossRef]
  • Chernavskii P.A.,Khodakov A.Y.,Pankina G.V.,Girardon J.-S.,Quinet E. (2006) In situ characterization of the genesis of cobalt metal particles in silica-supported Fischer-Tropsch catalysts using Foner magnetic method, Appl. Catal. A 306, 108-119. [CrossRef]
  • Chernavskii P.A.,Lermontov A.S.,Pankina G.V.,Torbin S.N.,Lunin V.V. (2002) Effect of the ZrO2 pore structure on the reduction of a supported cobalt oxide in catalysts for Fischer-Tropsch synthesis, Kinetics Catal. 43, 268-274 [CrossRef]
  • Chu W.,Chernavskii P.A.,Gengembre L.,Pankina G.A.,Fongarland P.A.,Khodakov A.Y. (2007) Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts, J. Catal. 252, 215-230. [CrossRef]
  • Girardon J.-S.,Lermontov A.S.,Gengembre L.,Chernavskii P.A.,Griboval-Constant A.,Khodakov A.Y. (2005) Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts, J. Catal. 230, 339-352. [CrossRef]
  • Girardon J.-S.,Constant-Griboval A.,Gengembre L.,Chernavskii P.A.,Khodakov A.Y. (2005) Optimization of the pretreatment procedure in the design of cobalt silica supported Fischer-Tropsch catalysts, Catal. Today 106, 161-165. [CrossRef]
  • Kissinger H.E. (1957) Reaction kinetics in differential thermal analysis, Anal. Chem. 29, 1703-1706. [CrossRef]
  • Grandvallet P., Courty Ph., Freund E. (1984) Characterization and catalytic properties of copper-cobalt-aluminium-zinc mixed phases for higher alcohol synthesis, Proc. of the 8th Int. Cong. on Catal., Springer Verlag, Berlin, II, pp. 81-92.
  • Courty Ph.,Chaumette P.,Raimbault C.,Travers Ph. (1990) Production of methanol-higher alcohol mixtures from natural gas via syngas chemistry, Revue I.F.P. 45, 4, 561-578.
  • Dalmon J.-A.,Chaumette P.,Mirodatos C. (1992) Higher alcohols synthesis on cobalt based model catalysts, Catal. Today 15, 101-127. [CrossRef]
  • van de Loosdrecht J.,Balzhinimaev B.,Dalmon J.-A.,Niemantsverdriet J.W.,Tsybulya S.V.,Saib A.M., van Berge P.J.,Visagie J.L. (2007) Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation? Catal. Today 123, 293-302. [CrossRef]
  • Bremaud M.,Fongarland P.,Anfray J.,Jallais S.,Schweich D.,Khodakov A.Y. (2005) Influence of syngas composition on the transient behavior of a Fischer-Tropsch continuous slurry reactor, Catal. Today 106, 137-142. [CrossRef]
  • van Steen E., Clayes M., Dry M.E., van de Loosdrecht J.,Vilkoen E.L.,Visagie J.L. (2005) Stability of nanocrystals: Thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures, J. Phys. Chem. B 109, 3575-3677. [CrossRef] [PubMed]
  • Hauffe K. (1963) Reactions in solids and at their surface, Russian translation, Moscow, IL, Vol. 2, p. 275.
  • Cabrera N.,Mott N.F. (1948) The theory of the oxidation of metals, Rep. Prog. Phys. 12, 163-184. [CrossRef]
  • Barbier A.,Tuel A.,Arcon I.,Kodre A.,Martin G.A. (2001) Characterization and catalytic behavior of Co/SiO2 catalysts: Influence of dispersion in the Fischer-Tropsch reaction, J. Catal. 200, 106-116. [CrossRef]
  • Barbier A.,Hanif A.,Dalmon J.-A.,Martin G.A. (1998) Preparation and characterization of well-dispersed and stable Co/SiO2 catalysts using the ammonia method, Appl. Catal. AGen. 168, 333-343. [CrossRef]
  • Martin G.A., Dalmon J.-A., Mirodatos C. (1984) Particle sizesensitivity in catalysis by nickel: a statistical approach based on the combined effect of surface coverage and active dimension site, Proc. 8th Int. Cong. Catal., Berlin 1984, Dechema, IV, pp. 371-380.
  • Chu W.,Wang L.-N.,Chernavskii P.A.,Khodakov A.Y. (2008) Glow discharge plasma assisted design of cobalt catalysts for Fischer Tropsch synthesis, Angew. Chem. Int. Edit. 47, 5052-5055. [CrossRef]
  • Zhang Y.,Chu W.,Cao W.,Luo C.,Wen X.,Zhou K. (2000) A plasma-activated Ni/alpha-Al2O3 catalyst for the conversion of CH4 to syngas, Plasma Chem. Plasma P. 20, 137-144. [CrossRef]
  • Baker J.E.,Burch R.,Hibble S.J.,Loader P.K. (1990) Properties of silica-supported Cu-Co bimetallic catalysts in the synthesis of higher alcohols, Appl. Catal. 65, 281-292. [CrossRef]
  • Khodakov A.,Griboval-Constant A.,Bechara R.,Villain F. (2001) Pore-size control of cobalt dispersion and reducibility in mesoporous silicas, J. Phys. Chem. B 105, 9805-9811. [CrossRef]
  • Khodakov A.,Lynch J.,Bazin D.,Rebours B.Zanier N.Moisson B.,Chaumette P. (1997) Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts, J. Catal. 168, 16-25. [CrossRef]
  • Sewell G.S., van Steen E.,O'Connor C.T. (1996) Use of TPR/TPO for characterization of supported cobalt catalysts, Catal. Lett. 37, 255-260. [CrossRef]
  • Pichon C.,Lynch J. (2005) Synchrotron radiation and oil industry research, Oil Gas Sci. Technol. 60, 735-746. [CrossRef] [EDP Sciences]
  • Newton M.A.,Dent A.J.,Fiddy S.G.,Jyoti B.,Evans J. (2007) Combining diffuse reflectance infrared spectroscopy (DRIFTS), dispersive EXAFS, and mass spectrometry with high time resolution: Potential, limitations, and application to the study of NO interaction with supported Rh catalysts, Catal. Today 126, 1-2, 64-72. [CrossRef]
  • Frahm R. (1988) Quick scanning EXAFS: First experiments, Nucl. Instrum. Meth. A 270, 2-3, 578-581. [CrossRef]
  • Williamson G.K.,Hall W.H. (1953) X-ray line broadening from filed aluminium and wolfram, Acta Metal. 1, 22-31. [CrossRef]
  • Lynch J. (2002) Development of Structural Characterisation Tools for Catalysts, Oil Gas Sci. Technol. 57, 281-305. [CrossRef] [EDP Sciences]
  • Pan M.,Cowley J.M.,Chan I.Y. (1990) HREM imaging of small Pt clusters dispersed in Y-zeolites, Catal. Lett. 5, 1-11. [CrossRef]
  • Kerkhof F.P.J.,Moulijn J.A. (1979) Quantitative analysis of XPS intensities for supported catalysts, J. Phys. Chem. 83, 1612-1619. [CrossRef]
  • Kuipers H.P.C.E., Van Leuven H.C.E.,Visser W.M. (1986) The characterization of heterogeneous catalysts by XPS based on geometrical probability. 1. Monometallic catalysts, Surf. Interface Anal. 8, 235-242. [CrossRef]
  • Somorjai G.A. (1994) Introduction to Surface Chemistry and Catalysis, Willey, New York.
  • Benfield R. (1992) Mean coordination numbers and the nonmetal metal transition in clusters, J. Chem. Soc. Faraday Trans. 88, 8, 1107-1110. [CrossRef]
  • Chu W.,Chernavskii P.A.,Gengembre L.,Pankina G.A.,Fongarland P.,Khodakov A.Y. (2007) Cobalt Species in Promoted Cobalt Alumina-Supported Fischer-Tropsch Catalysts, J. Catal. 252, 215-230 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.