Dossier: Design of Sustainable Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 65, Number 5, September-October 2010
Dossier: Design of Sustainable Processes
Page(s) 735 - 749
DOI https://doi.org/10.2516/ogst/2010009
Published online 22 September 2010
  • Agreda V., Partin L., Heise W. (1990) High-purity Methyl acetate via reactive distillation, Chem. Eng. Prog. 86, 2, 40-46. [Google Scholar]
  • Barbosa D., Doherty M.F. (1987a) Theory of phase diagrams and azeotropic conditions for two-phase reactive systems, Proc. R. Soc. Lond. A 413, 1845, 443-458. [CrossRef] [Google Scholar]
  • Barbosa D., Doherty M.F. (1987b) A new set of composition variables for the representation of reactive phase diagrams, Proc. R. Soc. Lond. A 413, 1845, 459-464. [CrossRef] [Google Scholar]
  • Chakravaty T., Phukan U.K., Weiland R.H. (1985) Reaction of acid gases with mixtures of amines, Chem. Eng. Prog. 81, April, 32-36. [Google Scholar]
  • Danckwerts P.V. (1951) Continuous flow systems. Distribution of residence times, Chem. Eng. Sci. 2, 1-13. [Google Scholar]
  • DeCoursey W.J. (1982) Enhancement factors for gas absorption with reversible reaction, Chem. Eng. Sci. 37, 10, 1483-1489. [CrossRef] [Google Scholar]
  • Doherty M.F. (1990) Topological theory of phase diagrams for reacting mixtures, Proc. R. Soc. Lond. A 430, 1880, 669-678. [CrossRef] [Google Scholar]
  • Doherty M.F., Huss R.S., Chen F., Malone M.F. (2003) Reactive distillation for methyl acetate production, Comput. Chem. Eng. 27, 12, 1855-1866. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Doherty M.F., Song W., Venimadhavan G., Manning J.M., Malone M.F. (1998) Measurement of residue curves maps and heterogeneous kinetics in methyl acetate synthesis, Ind. Eng. Chem. Res. 37, 5Dossier: Design of Sustainable Processes, 1917-1928. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Dudukovic M.P., Lee J.H. (1998) A comparison of the equilibrium and nonequilibrium models for a multicomponent reactive distillation column, Comput. Chem. Eng. 23, 1, 159-172. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Gear C.W. (1971) Simultaneous Numerical solution of differentialalgebraic equations, IEEE T. Circuit Theory 18, 89-95. [CrossRef] [Google Scholar]
  • Gorak A., Kenig E.Y., Schneider R. (2001) Reactive absorption: Optimal process design via optimal modelling, Chem. Eng. Sci. 56, 2, 343-350. [CrossRef] [Google Scholar]
  • Gorak A., Kreul L.U., Barton P.I. (1999a) Modelling of homogeneous reactive separation processes in packed columns, Chem. Eng. Sci. 54, 1, 19-24. [CrossRef] [Google Scholar]
  • Gorak A., Schneider R., Kenig E.Y. (1999b) Dynamic modelling of reactive absorption with the maxwell-stefan approach, T. I. Chem. Eng. A 77, 7, 633-638. [Google Scholar]
  • Higbie R. (1935) The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure, T. Am. Inst. Chem. Eng. 31, 365-389. [Google Scholar]
  • Hikita H., Asai S., Takatsuka T. (1972) Gas Absorption with a Two-Step Instantaneous Chemical Reaction, Chem. Eng. J. 4, 1, 31-40. [CrossRef] [Google Scholar]
  • Lockett M.J. (1986) Distillation tray fundamentals, Cambridge University Press. [Google Scholar]
  • Newman J. (1991) Electrochemical systems, 2nd edition, Prentice- Hall, Englewood Cliffs, NJ. [Google Scholar]
  • Pagani G., d’Arminio Monforte A., Bianchi G. (2001) Transferbased models implementation in an equation oriented package, Comput. Chem. Eng. 25, 11-12, 1493-1511. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Prausnitz J., Lichtenthaler R., Gomes de Azevedo E. (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edition, Prentice Hall PTR, New Jersey. [Google Scholar]
  • Reid R.C., Prausnitz J.M., Poling B.E. (1987) Properties of gases and liquids, 4th edition, McGraw-Hill, New York. [Google Scholar]
  • Sawistowski H., Pilavakis P.A. (1979) Distillation with chemical reaction in a packed column, Inst. Chem. Eng. Symp. Series No. 56, London, 49-63. [Google Scholar]
  • Seader J.D., Henley E.J. (1981) Equilibrium stage separation operations in chemical engineering, Wiley, New York. [Google Scholar]
  • Slattery J.C. (1981) Momentum, energy and mass transfer in continua, 2nd edition, Krieger publishing company, Huntington, NY. [Google Scholar]
  • Smith W.R. (1980) The computation of chemical equilibria in complex systems, Ind. Eng. Chem. Fund. 19, 1-10. [CrossRef] [Google Scholar]
  • Taylor R., Krishna R. (1993) Multicomponent mass transfer, Wily series in chemical engineering. [Google Scholar]
  • Taylor R., Krishna R. (2000) Modelling reactive distillation, Chem. Eng. Sci. 55, 22, 5183-5229. [CrossRef] [Google Scholar]
  • Toor H.L. (1957) Diffusion in three component gas mixture, AIChE J. 3, 198-207. [CrossRef] [Google Scholar]
  • Valerio S., Vanni M., Baldi G. (1995) The role of non-ideal phenomena in interfacial mass transfer with chemical reaction, Chem. Eng. J. 57, 2, 205-217. [Google Scholar]
  • Versteeg G.F., Bosch H., Kuipers J.A.M., van Swaaij W.P.M. (1989) Mass transfer with complex chemical reactions, Gaz Separation Purification 3, 2, 75-83. [CrossRef] [Google Scholar]
  • Versteeg G.F., Huttenhuis P.J.G., Agrawal N.J., Hogendoorn J.A. (2007) Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine, J. Petrol. Sci. Eng. 55, 1-2, 122-134. [CrossRef] [Google Scholar]
  • Vignes A. (1966) Diffusion in binary solutions, Ind. Eng. Chem. Fund. 5, 189-199. [CrossRef] [Google Scholar]
  • Walas S.M. (1985) Phase equilibria in chemical engineering, Butterworth, Stoneham, MA. [Google Scholar]
  • Wesselingh J.A., Krishna R. (1997) The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52, 6, 861-911. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.