Dossier: Design of Sustainable Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 65, Number 5, September-October 2010
Dossier: Design of Sustainable Processes
Page(s) 751 - 762
DOI https://doi.org/10.2516/ogst/2009087
Published online 22 September 2010
  • Yang C.C., Lee Y.J. (2009) Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC), Thin Solid Films 517, 4735-4740. [CrossRef] [Google Scholar]
  • Gelbard G., Vielfaure-Joly F. (2000) Polynitrogen strong bases as immobilized catalysts for the transesterification of vegetable oils, C.R. Acad. Sci. II C 3, 563-567. [Google Scholar]
  • Lojewska J., Wasilewski J., Terelak K., Lojewski T., Kolodziej A. (2008) Catal. Commun. 9, 9, 1833-1837. [CrossRef] [Google Scholar]
  • Doucet C., Germanaud L., Couturier J.L., Dubois J.L.M., Sage J.M. (2008) EP Pat. 1914293. [Google Scholar]
  • Dubois J.L. (2006) WO Pat. 084993; Watanabe M., Uchida H. (2008) WO Pat. 138940. [Google Scholar]
  • Dubois J.L. (2008) World Pat. 090294. [Google Scholar]
  • Lambiotte G. (1997) CH Pat. 688041. [Google Scholar]
  • Fournier M., Aouissi A., Rocchiccioli-Deltcheff C. (1994) Evidence of (β-MoO3 formation during thermal treatment of silica-supported 12molybdophosphoric acid catalysts, Chem. Commun. 307-308. [Google Scholar]
  • Rocchicciolo-Deltcheff C., Aoussi A., Bettahar M.M., Launay S., Fournier M. (1996) Catalytic Reactivity of 12-Molybdophosphoric Acid Related to Its Thermal Behavior Investigated through IR, Raman, Polarographic, and X-ray Diffraction Studies: A Comparison with 12-Molybdosilicic Acid, J. Catal. 164, 16-27. [CrossRef] [Google Scholar]
  • Rocchiccioli-Deltcheff C., Aouissi A., Launay S., Fournier M. (1996) Silica-supported 12-molybdophosphoric acid catalysts: Influence of the thermal treatments and of the Mo contents on their behavior, from IR, Raman, X-ray diffraction studies, and catalytic reactivity in the methanol oxidation, J. Mol. Catal. A 114, 331-342. [CrossRef] [Google Scholar]
  • Briand L.E., Jehng J.Mirn, Cornaglia L., Hirt A.M., Wachs I.E. (2003) Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates, Catal. Today 78, 1-4, 257-268. [CrossRef] [Google Scholar]
  • Liu H., Iglesia E. (2003) Selective One-Step Synthesis of Dimethoxymethane via Methanol or Dimethyl Ether Oxidation on H3+n VnMo12-nPO40 Keggin Structures, J. Phys. Chem. B 107, 10840-10847. [CrossRef] [Google Scholar]
  • Liu H., Iglesia E. (2005) Selective Oxidation of Methanol and Ethanol on Supported Ruthenium Oxide Clusters at Low Temperatures, J. Phys. Chem. B 109, 2155-2163. [CrossRef] [PubMed] [Google Scholar]
  • Fu Y., Shen J. (2007) Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity, Chem. Commun. 2172-2175. [Google Scholar]
  • Shannon I.J., Maschmeyer T., Oldroyd R.D., Sankar G., Thomas J.M., Pernot H., Baalikdjian J.P., Che M. (1998) Metallocenederived, isolated MoVI active centres on mesoporous silica for the catalytic dehydrogenation of methanol, J. Chem. Soc., Faraday Trans. 94, 1495-1500. [CrossRef] [Google Scholar]
  • Yuan Y., Liu H., Imoto H., Shido T., Iwasawa Y. (2000) Selective Synthesis of Methylal from Methanol on a New Crystalline SbRe2O6 Catalyst, Chem. Lett. 29, 6, 674-681. [CrossRef] [Google Scholar]
  • Yuan Y., Liu H., Imoto H., Shido T., Iwasawa Y. (2000) Performance and Characterization of a New Crystalline SbRe2O6 Catalyst for Selective Oxidation of Methanol to Methylal, J. Catal. 195, 51-61. [CrossRef] [Google Scholar]
  • Iwasawa Y., Yuan Y., Shido T., Nobuhiro N. (2001) US Pat. 1132366. [Google Scholar]
  • Iwasawa Y., En Y., Takafumi S. (2000) Jpn Pat. 2000-177972. [Google Scholar]
  • Liu H., Shido T., Iwasawa Y. (2000) Selective ammoxidation of isobutane on a crystalline SbRe2O6 catalyst, Chem. Commun. 1881-1882. [Google Scholar]
  • Yuan Y., Iwasawa Y. (2002) Performance and Characterization of Supported Rhenium Oxide Catalysts for Selective Oxidation of Methanol to Methylal, J. Phys. Chem. B 106, 4441-4449. [CrossRef] [Google Scholar]
  • Royer S., Sécordel X., Brandhorst M., Dumeignil F., Cristol S., Dujardin C., Capron M., Payen E., Dubois J.L. (2008) Amorphous oxide as a novel efficient catalyst for direct selective oxidation of methanol to dimethoxymethane, Chem. Comm. 865-867. [Google Scholar]
  • Pernicone N. (1974) MoO3-Fe2(MoO4)3 catalysts for methanol oxidation, J. Less Common Metals 36, 289-297. [CrossRef] [Google Scholar]
  • Pernicone N., Lazzerin F., Liberti G., Lanzavecchia G. (1969) On the mechanism of CH3OH oxidation to CH2O over MoO3- Fe2(MoO4)3 catalyst, J. Catal. 14, 293-302. [CrossRef] [Google Scholar]
  • Brunauer S., Emmett P.H., Teller E. (1938) Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60, 309-319. [CrossRef] [Google Scholar]
  • Söderhjelm E., House M.P., Cruise N., Holmberg J., Bowker M., Bovin J.O., Anderson A. (2008) On the synergy effect in MoO3 – Fe2(MoO4)3 catalysts for methanol oxydation to formaldehyde, Topic Catal. 50, 145-155. [CrossRef] [Google Scholar]
  • Bourgeois Y. (1994) Formaldéhyde, Techniques de l’Ingénieur J 6, 340-341. [Google Scholar]
  • Brandhorst M., Cristol S., Capron M., Dujardin C., Vezin H., Lebourdon G., Payen E. (2006) Catalytic Oxidation of methanol on Mo/Al2O3 catalyst: an EPR and Raman/Infrared Operando spectroscopies study, Catal. Today 113, 1-2, 34-39. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.