Dossier: Design of Sustainable Processes
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 65, Number 5, September-October 2010
Dossier: Design of Sustainable Processes
Page(s) 721 - 733
DOI https://doi.org/10.2516/ogst/2009086
Published online 25 October 2010
  • Bergeot G., Leinekugel-Le-Cocq D., Leflaive P., Laroche C., Muhr L., Bailly M. (2009) Simulated moving bed reactor for paraxylene production, Chem. Eng. Trans. 17, 87-92. [Google Scholar]
  • Chirico R.D., Steele W.V. (1997) Thermodynamic Equilibria in Xylene Isomerization. 5. Xylene Isomerization Equilibria from Thermodynamic Studies and Reconciliation of Calculated and Experimental Product Distributions, J. Chem. Eng. Data 42, 4, 784-790. [CrossRef] [Google Scholar]
  • Da Silva F.A., Silva J.A., Rodrigues A.E. (1999) A General Package for the Simulation of Cyclic Adsorption Processes, Adsorption 5, 3, 229-244. [CrossRef] [Google Scholar]
  • Dulot H. (2000) Modélisation de réacteurs-adsorbeurs mis en oeuvre en lit simulé. Application à la conversion et à la séparation d’hydrocarbures aromatiques, PhD Thesis, novembre 2000. [Google Scholar]
  • Fish B., Carr R.W., Aris R. (1986) The continuous countercurrent moving bed chromatographic reactor, Chem. Eng. Sci. 41, 4, 661-668. [CrossRef] [Google Scholar]
  • Ganetsos G., Barker P.E., Ajongwen J.N. (1993) Batch and continuous chromatographic systems as combined bioreactorseparators, in Preparative and production scale chromatography, Ganetsos G., Barker P.E. (eds), Marcel Dekker. [Google Scholar]
  • Hashimoto K., Adachi S., Noujima H., Ueda Y. (1983) A new process combining adsorption and enzyme reaction for producing higher-fructose syrup, Biotechnol. Bioeng. 25, 10, 2371-2393. [CrossRef] [PubMed] [Google Scholar]
  • Kurup A.S., Subramani H.J., Hidajat K., Ray A.K. (2005) Optimal design and operation of SMB bioreactor for sucrose inversion, Chem. Eng. J. 108, 1-2, 19-33. [CrossRef] [Google Scholar]
  • Lode F., Houmard M., Migliorini C., Mazzotti M., Morbidelli M. (2001) Continuous reactive chromatography, Chem. Eng. Sci. 56, 2, 269-291. [CrossRef] [Google Scholar]
  • Minceva M., Gomes P.S., Meshko V., Rodrigues A.E. (2008) Simulated moving bed reactor for isomerization and separation of p-xylene, Chem. Eng. J. 140, 1-3, 305-323. [CrossRef] [Google Scholar]
  • Ruthven D.M., Ching C.B. (1989) Counter-Current and Simulated Counter-Current Adsorption Separation Processes, Chem. Eng. Sci. 44, 1011-1038. [Google Scholar]
  • Sardin M., Schweich D., Villermaux J. (1993) Preparative fixed-bed chromatographic reactor, in Preparative and production scale chromatography, Ganetsos G., Barker P.E. (eds), Marcel Dekker. [Google Scholar]
  • Schmidt-Traub H., Strube J. (1996) Dynamic simulation of simulated-moving-bed chromatographic processes, Comput. Chem. Eng. 20, Supplement 1, S641-S646. [Google Scholar]
  • Storti G., Baciocchi R., Mazzotti M., Morbidelli M. (1995) Design of Optimal Operating Conditions of Simulated Moving Bed Adsorptive Separation Units, Ind. Eng. Chem. Res. 34, 1, 288-301. [Google Scholar]
  • Takeuchi K., Uraguchi Y. (1977) Experimental studies of a chromatographic moving-bed reactor, J. Chem. Eng. Jpn 10, 6, 455-460. [CrossRef] [Google Scholar]
  • Takeuchi K., Uraguchi Y. (1976) Separation conditions of the reactant and the product with a chromatographic moving bed reactor, J. Chem. Eng. Jpn 9, 2, 164-166. [CrossRef] [Google Scholar]
  • Yu W., Hidajat K., Ray A.K. (2005) Optimization of reactive simulated moving bed and Varicol systems for hydrolysis of methyl acetate, Chem. Eng. J. 112, 1-3, 57-72. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.