- US Energy Information Administration (2019) U.S. Energy-Related Carbon Dioxide Emissions. [Google Scholar]
- Economides M.J., Wood D.A. (2009) The state of natural gas, J. Nat. Gas Sci. Eng. 1, 1–2, 1–13. https://doi.org/10.1016/j.jngse.2009.03.005. [CrossRef] [Google Scholar]
- Mokhatab S., Poe W.A. (2012) Handbook of natural gas transmission and processing, Gulf Professional Publishing, United State of America. [Google Scholar]
- Gudmundsson J., Borrehaug A. (1996) Frozen hydrate for transport of natural gas, in: NGH 96: 2nd International Conference on Natural Gas Hydrates, Toulouse, June 2–6, 1996, pp. 415–422. [Google Scholar]
- Dawe R.A. (2003) Hydrate technology for transporting natural gas. http://hdl.handle.net/10576/7797. [Google Scholar]
- Mehrabi K., Javanmardi J., Rasoolzadeh A., Mohammadi A.H. (2020) Thermodynamic modeling of clathrate hydrate stability conditions in the presence of amino acid aqueous solution, J. Mol. Liq. 313, 113488. https://doi.org/10.1016/j.molliq.2020.113488. [CrossRef] [Google Scholar]
- Fowler D.L., Loebenstein W.V., Pall D.B., Kraus C.A. (1940) Some unusual hydrates of quaternary ammonium salts, J. Am. Chem. Soc. 62, 5, 1140–1142. https://doi.org/10.1021/ja01862a039. [CrossRef] [Google Scholar]
- McMullan R., Jeffrey G.A. (1959) Hydrates of the tetra n-butyl and Tetra i-amyl quaternary ammonium salts, J. Chem. Phys. 31, 5, 1231–1234. https://doi.org/10.1063/1.1730574. [CrossRef] [Google Scholar]
- Dyadin Y.A., Udachin K.A. (1984) Clathrate formation in water-peralkylonium salts systems, in: Clathrate compounds, molecular inclusion phenomena, and cyclodextrins, The Springer Link, pp. 61–72. https://doi.org/10.1007/978-94-009-5376-5_4. [CrossRef] [Google Scholar]
- Dyadin Y.A., Udachin K.A., Bogatyryova S.V., Zhurko F.V., Mironov Y.I. (1988) Cubic structure II double clathrate hydrates with tetra (n-propyl) ammonium fluoride, J. Incl. Phen. 6, 6, 565–575. https://doi.org/10.1007/BF00656337. [CrossRef] [Google Scholar]
- Sloan E.D. Jr, Koh C.A. (2007) Clathrate hydrates of natural gases, CRC Press, Boca Raton, FL. [CrossRef] [Google Scholar]
- Gaponenko L.A., Solodovnikov S.F., Dyadin Y.A., Aladko L.S., Polyanskaya T.M. (1984) Crystallographic study of tetra-n-butylammonium bromide polyhydrates, J. Struct. Chem. 25, 1, 157–159. https://doi.org/10.1007%2FBF00808575. [CrossRef] [Google Scholar]
- Lipkowski J., Komarov V.Y., Rodionova T.V., Dyadin Y.A., Aladko L.S. (2002) The structure of tetrabutylammonium bromide hydrate (C4H9) 4NBr 21/3H2O, J. Supramol. Chem. 2, 4–5, 435–439. https://doi.org/10.1016/S1472-7862(03)00054-6. [CrossRef] [Google Scholar]
- Shimada W., Ebinuma T., Oyama H., Kamata Y., Takeya S., Uchida T., Nagao J., Narita H. (2003) Separation of gas molecule using tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals, Jpn. J. Appl. Phys. 42, 2A, L129. https://doi.org/10.1143/JJAP.42.L129/meta. [CrossRef] [Google Scholar]
- Mohammadi A., Manteghian M., Mohammadi A.H. (2013) Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF) + methane+ water, TBAF + carbon dioxide + water, and TBAF + nitrogen + water, J. Chem. Eng. Data 58, 12, 3545–3550. https://doi.org/10.1021/je4008519. [CrossRef] [Google Scholar]
- Li X.S., Xu C.G., Chen Z.Y., Wu H.J. (2010) Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride, Energy 35, 9, 3902–3908. https://doi.org/10.1016/j.energy.2010.06.009. [CrossRef] [Google Scholar]
- Sun Z.G., Sun L. (2010) Equilibrium conditions of semi-clathrate hydrate dissociation for methane + tetra-n-butyl ammonium bromide, J. Chem. Eng. Data 55, 9, 3538–3541. https://doi.org/10.1021/je100183s. [CrossRef] [Google Scholar]
- Jin Y., Kida M., Nagao J. (2012) Phase equilibrium conditions for clathrate hydrates of tetra-n-butylammonium bromide (TBAB) and xenon, J. Chem. Eng. Data 57, 6, 1829–1833. https://doi.org/10.1021/je300299b. [CrossRef] [Google Scholar]
- Rodionova T.V., Komarov V.Y., Villevald G.V., Karpova T.D., Kuratieva N.V., Manakov A.Y. (2013) Calorimetric and structural studies of tetrabutylammonium bromide ionic clathrate hydrates, J. Phys. Chem. 117, 36, 10677–10685. https://doi.org/10.1021/jp406082z. [CrossRef] [PubMed] [Google Scholar]
- Oyama H., Shimada W., Ebinuma T., Kamata Y., Takeysa S., Uchida T., Nagao J., Narita H. (2005) Phase diagram, latent heat, and specific heat of TBAB semi clathrate hydrate crystals, Fluid Phase Equilib. 234, 1–2, 131–135. https://doi.org/10.1016/j.fluid.2005.06.005. [CrossRef] [Google Scholar]
- Shimada W., Shiro M., Kondo H., Takeya S., Oyama H., Ebinuma T., Narita H. (2005) Tetra-n-butylammonium bromide–water (1/38), Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 61, 2, 65–66. https://doi.org/10.1107/S0108270104032743. [Google Scholar]
- Suwinska K., Lipkowski J.S., Dyadin Y.A., Komarov V.Y., Terekhova I.S., Rodionova T.V., Manakov A.Y. (2006) Clathrate formation in the water-tetraisoamylammonium propionate system: X-ray structural analysis of the clathrate hydrate (i–C5H11)4NC2H5CO2 36H2O, J. Incl. Phenom. Macrocyclic Chem. 56, 3, 331–335. https://doi.org/10.1007/s10847-006-9102-5. [CrossRef] [Google Scholar]
- Li D.L., Du J.W., Fan S.S., Liang D.Q., Li X.S., Huang N.S. (2007) Clathrate dissociation conditions for methane + tetra-n-butyl ammonium bromide (TBAB) + water, J. Chem. Eng. Data 52, 5, 1916–1918. https://doi.org/10.1021/je700229e. [CrossRef] [Google Scholar]
- Arjmandi M., Chapoy A., Tohidi B. (2007) Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutylammonium bromide, J. Chem. Eng. Data 52, 6, 2153–2158. https://doi.org/10.1021/je700144p. [CrossRef] [Google Scholar]
- Mohammadi A.H., Richon D. (2010) Phase equilibria of semi-clathrate hydrates of tetra-n-butylammonium bromide + hydrogen sulfide and tetra-n-butylammonium bromide + methane, J. Chem. Eng. Data 55, 2, 982–984. https://doi.org/10.1021/je9004257. [CrossRef] [Google Scholar]
- Gholinezhad J., Chapoy A., Tohidi B. (2011 July) Thermodynamic stability and self-preservation properties of semi-clathrates in the methane+ tetra-n-butyl ammonium bromide+ water system, in: Proceedings of the 7th International Conference on Gas Hydrates, 17–21 July 2011, Edinburgh, United Kingdom, pp. 17–21. [Google Scholar]
- Lee S., Park S., Lee Y., Lee J., Lee H., Seo Y. (2011) Guest gas enculturation in semiclathrates of tetra-n-butylammonium bromide: Stability condition and spectroscopic analysis, Langmuir 27, 17, 10597–10603. https://doi.org/10.1021/la202143t. [CrossRef] [PubMed] [Google Scholar]
- Mohammadi A.H., Eslamimanesh A., Belandria V., Richon D. (2011) Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+ tetra-n-butylammonium bromide aqueous solution, J. Chem. Eng. Data 56, 10, 3855–3865. https://doi.org/10.1021/je2005159. [CrossRef] [Google Scholar]
- Liao Z., Guo X., Zhao Y., Wang Y., Sun Q., Liu A., Sun C., Chen G. (2013) Experimental and modeling study on phase equilibria of semiclathrate hydrates of tetra-n-butyl ammonium bromide+ CH4, CO2, N2, or gas mixtures, Ind. Eng. Chem. Res. 52, 51, 18440–18446. https://doi.org/10.1021/ie402903m. [CrossRef] [Google Scholar]
- Chen G.J., Guo T.M. (1996) Thermodynamic modeling of hydrate formation based on new concepts, Fluid Phase Equilib. 122, 1–2, 43–65. https://doi.org/10.1016/0378-3812(96)03032-4. [CrossRef] [Google Scholar]
- Chen G.J., Guo T.M. (1998) A new approach to gas hydrate modelling, Chem. Eng. J. 71, 2, 145–151. https://doi.org/10.1016/S1385-8947(98)00126-0. [CrossRef] [Google Scholar]
- Roosta H., Khosharay S., Varaminian F. (2013) Experimental study of methane hydrate formation kinetics with or without additives and modeling based on chemical affinity, Energy Convers. Manage. 76, 499–505. https://doi.org/10.1016/j.enconman.2013.05.024. [CrossRef] [Google Scholar]
- Sangwai J.S., Oellrich L. (2014) Phase equilibrium of semiclathrate hydrates of methane in aqueous solutions of tetra-n-butyl ammonium bromide (TBAB) and TBAB–NaCl, Fluid Phase Equilib. 367, 95–102. https://doi.org/10.1016/j.fluid.2014.01.036. [CrossRef] [Google Scholar]
- Mech D., Pandey G., Sangwai J.S. (2015) Effect of NaCl, methanol and ethylene glycol on the phase equilibrium of methane hydrate in aqueous solutions of tetrahydrofuran (THF) and tetra-n-butyl ammonium bromide (TBAB), Fluid Phase Equilib. 402, 9–17. https://doi.org/10.1016/j.fluid.2015.05.030. [CrossRef] [Google Scholar]
- Najibi H., Momeni K., Sadeghi M.T. (2015) Theoretical and experimental study of phase equilibrium of semi-clathrate hydrates of methane+ tetra-n-butyl-ammonium bromide aqueous solution, J. Nat. Gas Sci. Eng. 27, 1771–1779. https://doi.org/10.1016/j.jngse.2015.11.002. [CrossRef] [Google Scholar]
- van derWaals J.H., Platteeuw J.C. (1958) Clathrate solutions, in: Adv Chem Phys, JohnWiley & Sons. https://doi.org/10.1002/9780470143483.ch1. [Google Scholar]
- Verrett J., Renault-Crispo J.S., Servio P. (2015) Phase equilibria, solubility and modeling study of CO2/CH4+ tetra-n-butylammonium bromide aqueous semi-clathrate systems, Fluid Phase Equilib. 388, 160–168. https://doi.org/10.1016/j.fluid.2014.12.045. [CrossRef] [Google Scholar]
- Long X., Wang Y., Lang X., Fan S., Chen J. (2016) Hydrate equilibrium measurements for CH4, CO2, and CH4 + CO2 in the presence of tetra-n-butyl ammonium bromide, J. Chem. Eng. Data 61, 11, 3897–3901. https://doi.org/10.1021/acs.jced.6b00641. [CrossRef] [Google Scholar]
- Eslamimanesh A., Mohammadi A.H., Richon D. (2012) Thermodynamic modeling of phase equilibria of semi-clathrate hydrates of CO2, CH4, or N2 + tetra-n-butylammonium bromide aqueous solution, Chem. Eng. Sci. 81, 319–328. https://doi.org/10.1016/j.ces.2012.07.006. [CrossRef] [Google Scholar]
- Joshi A., Mekala P., Sangwai J.S. (2012) Modeling phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of tetra-n-butyl ammonium bromide, J. Nat. Gas Chem. 21, 4, 459–465. https://doi.org/10.1016/S1003-9953(11)60391-5. [CrossRef] [Google Scholar]
- Baghban A., Ahmadi M.A., Pouladi B., Amanna B. (2015) Phase equilibrium modeling of semi-clathrate hydrates of seven commonly gases in the presence of TBAB ionic liquid promoter based on a low parameter connectionist technique, J. Supercrit. Fluids 101, 184–192. https://doi.org/10.1016/j.supflu.2015.03.004. [CrossRef] [Google Scholar]
- Shi L.L., Liang D.Q. (2015) Thermodynamic model of phase equilibria of tetrabutylammonium halide (fluoride, chloride, or bromide) plus methane or carbon dioxide semiclathrate hydrates, Fluid Phase Equilib. 386, 149–154. https://doi.org/10.1016/j.fluid.2014.12.004. [CrossRef] [Google Scholar]
- Avula V.R., Gardas R.L., Sangwai J.S. (2016) A robust model for the phase stability of clathrate hydrate of methane in an aqueous system of TBAB, TBAB+ NaCl and THF suitable for storage and transportation of natural gas, J. Nat. Gas Sci. Eng. 33, 509–517. https://doi.org/10.1016/j.jngse.2016.05.051. [CrossRef] [Google Scholar]
- Ma Q.L., Qi J.L., Chen G.J., Sun C.Y. (2016) Modeling study on phase equilibria of semiclathrate hydrates of pure gases and gas mixtures in aqueous solutions of TBAB and TBAF, Fluid Phase Equilib. 430, 178–187. https://doi.org/10.1016/j.fluid.2016.10.001. [CrossRef] [Google Scholar]
- Mesbah M., Soroush E., Rezakazemi M. (2019) Modeling dissociation pressure of semi-clathrate hydrate systems containing CO2, CH4, N2, and H2S in the presence of tetra-n-butyl ammonium bromide, J. Non-Equilib. Thermodyn. 44, 1, 15–28. https://doi.org/10.1515/jnet-2018-0015. [CrossRef] [Google Scholar]
- Parhizgar H., Javanmardi J., Mohammadi A.H., Moshfeghian M., Parvasi P. (2018) A thermodynamic framework for modeling semiclathrate hydrate phase stability conditions in gas+ tetra-n-butyl ammonium halide aqueous solution system, Asia-Pac. J. Chem. Eng. 13, 3, 2199. https://doi.org/10.1002/apj.2199. [Google Scholar]
- Mesbah M., Galledari S.A., Soroush E., Momeni M. (2019) Modeling phase behavior of semi-clathrate hydrates of CO2, CH4, and N2 in aqueous solution of tetra-n-butyl ammonium fluoride, J. Non-Equilib. Thermodyn. 44, 2, 155–167. https://doi.org/10.1515/jnet-2018-0079. [CrossRef] [Google Scholar]
- Javanmardi J., Babaee S., Eslamimanesh A., Mohammadi A.H. (2012) Experimental measurements and predictions of gas hydrate dissociation conditions in the presence of methanol and ethane-1, 2-diol aqueous solutions, J. Chem. Eng. Data 57, 5, 1474–1479. https://doi.org/10.1021/je2013846. [CrossRef] [Google Scholar]
- Rasoolzadeh A., Javanmardi J., Eslamimanesh A., Mohammadi A.H. (2016) Experimental study and modeling of methane hydrate formation induction time in the presence of ionic liquids, J. Mol. Liq. 221, 149–155. https://doi.org/10.1016/j.molliq.2016.05.016. [CrossRef] [Google Scholar]
- Ghaedi H., Javanmardi J., Rasoolzadeh A., Mohammadi A.H. (2018) Experimental study and thermodynamic modeling of methane hydrate dissociation conditions in the simultaneous presence of BMIM-BF4 and ethanol in aqueous solution, J. Chem. Eng. Data 63, 5, 1724–1732. https://doi.org/10.1021/acs.jced.8b00046. [CrossRef] [Google Scholar]
- Rasoolzadeh A., Javanmardi J., Mohammadi A.H. (2019) An experimental study of the synergistic effects of BMIM-BF4, BMIM-DCA and TEACl aqueous solutions on methane hydrate formation, Pet. Sci. 16, 2, 409–416. https://doi.org/10.1007/s12182-019-0302-1. [CrossRef] [Google Scholar]
- Mehrabi K., Javanmardi J., Rasoolzadeh A., Mohammadi A.H. (2021) Effects of diethanolamine and ethylene glycol+ diethanolamine aqueous solutions on methane hydrate stability conditions: Experimental measurements and thermodynamic modeling, J. Mol. Liq. 328, 115472. https://doi.org/10.1016/j.molliq.2021.115472. [CrossRef] [Google Scholar]
- Peng D.Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 1, 59–64. https://doi.org/10.1021/i160057a011. [CrossRef] [Google Scholar]
- Poling B.E., Thomson G.H., Friend D.G., Rowley R.L., Wilding W.V., Perry R.H., Green D.W. (2008) Chemical Engineers Handbook, The McGraw-Hill Companies. [Google Scholar]
- Sfaxi I.B.A., Durand I., Lugo R., Mohammadi A.H., Richon D. (2014) Hydrate phase equilibria of CO2+ N2+ aqueous solution of THF, TBAB or TBAF system, Int. J. Greenhouse Gas Control 26, 185–192. https://doi.org/10.1016/j.ijggc.2014.04.013. [CrossRef] [Google Scholar]
- Amid M., Zaferani S.P.G., Amooey A.A. (2021) A compare review about equilibrium conditions of semi-clathrate hydrate: experimental measurements visions and thermodynamic modeling aspects, J. Incl. Phenom. Macrocyclic Chem. 100, 109–129. https://doi.org/10.1007/s10847-021-01062-w. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Article Number | 75 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/ogst/2021055 | |
Published online | 06 December 2021 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.