Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 63
Number of page(s) 10
Published online 29 September 2021
  • Zou C., Yang Z. (2019) Establishment and practice of unconventional oil and gas geology, Acta Geol. Sin. 93, 01, 12–23. [Google Scholar]
  • Su J.L., Zhao Y., He T., Luo P.Y. (2021) Prediction of drilling leakage locations based on optimized neural networks and the standard random forest method, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 76, 24. [Google Scholar]
  • Deng Y., Guo R., Tian Z.Y., Zhao L.M., Hu D.D., Liu H.Y., Liu Y. (2020) Water saturation modeling using modified J-function constrained by rock typing method in bioclastic limestone, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 75, 66. [Google Scholar]
  • Shafiabadi M., Kamkar-Rouhani A., Sajadi S.M. (2021) Identification of the fractures of carbonate reservoirs and determination of their dips from FMI image logs using Hough transform algorithm, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 76, 37. [Google Scholar]
  • Bourbiaux B. (2010) Fractured reservoir simulation: a challenging and rewarding issue, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 65, 2, 227–238. [Google Scholar]
  • Flaum C., Galford J.E., Hasting A. (1989) Enhanced vertical resolution processing of dual detector gamma–gamma density logs, The Log Analyst 29, 5, 6, 150–157. [Google Scholar]
  • Nelson R.J., Mitchell W.K. (1992) Improved vertical resolution of well logs by resolution matching, The Log Analyst 32, 4, 281–301. [Google Scholar]
  • Liu Y.M., Zou C.C. (2006) A new method of high-resolution processing of well Logs based on genetic algorithm, Prog. Geophys. 21, 4, 1202–1207. [Google Scholar]
  • Conaway J.G. (1980) Exact inverse filters for the deconvolution of gamma-ray logs, Geoexplorations 18, 1–14. [CrossRef] [Google Scholar]
  • Freedman R., Minerbo G.N. (June 1991) Maximum entropy inversion of induction-log data, SPE Form. Eval. 6, 02183–200. [CrossRef] [Google Scholar]
  • Tai Z.W., Cao S.M. (2005) Application of Walsh transform in improving logging curve resolution, J. Shengli Oilfield Staff Univ. 04, 47–48. [Google Scholar]
  • Li X., Zhang Z.H., Su H.C. (2015) Improving the resolution of logging curve based on window Fourier transform, Mod. Chem. Indus. 44, 06, 1406–1407. [Google Scholar]
  • Lu G.Y., Wong D.W. (2007) An adaptive inverse-distance weighting spatial interpolation technique, Comput. Geosci. 34, 9, 1044–1055. [Google Scholar]
  • Dong C., Loy C.C., He K., Tang X. (2016) Image super-resolution using deep convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38, 2, 295–307. [PubMed] [Google Scholar]
  • Yang J., Wright J., Huang T., Ma Y. (2010) Image super-resolution via sparse representation, Image Process. IEEE Trans. 19, 11, 2861–2873. [CrossRef] [Google Scholar]
  • Aharon M., Elad M., Bruckstein A. (2006) K-SVD: an algorithm for designing over complete dictionaries for sparse representation, IEEE Trans. Sig. Proc. 54, 11, 4311–4322. [CrossRef] [Google Scholar]
  • Jiang B. (2015) Method of improving acoustic well logging curve resolution based on compressed sensing, Petroleum Pipes Instrum. 1, 05, 34–36+41. [Google Scholar]
  • Ledig C., Theis L., Huszar F., Caballero J., Cunningham A., Acosta A., Aitken A., Tejani A., Totz J., Wang Z. (2017) Photo-realistic single image super-resolution using a generative adversarial network, IEEE Computer Soc. 2017, 105–114. [Google Scholar]
  • Volodymyr K., Zayd E.S., Stefano E. (2017) Audio super resolution using neural networks. [Google Scholar]
  • Lim T.Y., Yeh R.A., Xu Y., Do M.N., Hasegawa-Johnson M. (2018) Time-frequency networks for audio super-resolution, in: ICASSP 2018 – 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. [Google Scholar]
  • Chang H., Yeung D.Y., Xiong Y. (2004) Super-resolution through neighbor embedding, in: IEEE Computer Society Conference on Computer Vision & Pattern Recognition, IEEE. [Google Scholar]
  • Zhang D.P., Fan C.K., Kuang D.Q. (2019) Impact assessment of interlayers on geological storage of carbon dioxide in Songliao Basin, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 74, 85. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.