Capillarity in Porous Media: Recent Advances and Challenges
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Capillarity in Porous Media: Recent Advances and Challenges
Article Number 43
Number of page(s) 19
DOI https://doi.org/10.2516/ogst/2021025
Published online 14 June 2021
  • Sahni A., Gadelle F., Kumar M., Tomutsa L., Kovscek A. (2004) Experiments and analysis of heavy oil solution gas drive, SPE Reserv. Eval. Eng. 7, 03, 217–229. SPE-88442. [CrossRef] [Google Scholar]
  • McPhee C., Reed J., Zubizarreta I. (2015) Core analysis: A best practice guide, Vol. 64 (1st ed.), Elsevier. [Google Scholar]
  • Scherpenisse W., Wit K., Zweers A.E., Snoei G., Van Wolfswinkel A. (1994) Predicting gas saturation build-up during depressurisation of a North Sea oil reservoir, in: Presented to the SPE Europec Meeting, London, Oct. 1994. SPE 28842. [Google Scholar]
  • Ligthelm D.J., Reijnen G.C.A.M., Wit K., Weisenborn A.J., Scherpenisse W. (1997) Critical gas saturation during depressurisation and its importance in the Brent Field, in: 1997 Offshore Europe Conference Held in Aberdeen, Scotland, 9–12 September 1997. SPE-38475. [Google Scholar]
  • Firoozabadi A., Ottesen B., Mikklesen M. (1989) Measurements and modelling of supersaturation and critical gas saturation, in: SPE 19694, San Antonio. [Google Scholar]
  • Kamath J., Boyer R.E. (1995) Critical gas saturation and supersaturation in low-permeability rocks, in: SPE 26663, SPE Formation Evaluation, pp. 247–253. [Google Scholar]
  • Du C., Yortsos Y.C. (1999) A numerical study of the critical gas saturation in a porous medium, Trans. Porous Med. 35, 205–225. [CrossRef] [Google Scholar]
  • Egermann P., Vizika O. (2000) Critical gas saturation and relative permeability during depressurization in the far field and the near-wellbore region, in: 2000 SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 1-October 2000. SPE-63149. [Google Scholar]
  • Egermann P., Vizika O. (2001) A new method to determine critical gas saturation and relative permeability during depressurization in the near-wellbore region, Petrophysics 42, 4, 352–361. [Google Scholar]
  • Piccavet N., Long J., Hamon G., Bondino I., McDougall S.R. (2006) Depletion of near-critical oils: Comparison between pore network model predictions and experimental results, in: International Symposium of the Society of Core Analysts held in Trondheim, Norway, 12–16 September 2006. SCA2006-32. [Google Scholar]
  • Bondino I., McDougall S.R., Hamon G. (2005) Pore network modelling of heavy oil depressurisation: A parametric study of factors affecting critical gas saturation and 3-phase relative permeabilities, SPE J. 10, 02, 196–205. SPE-78976. [CrossRef] [Google Scholar]
  • Bondino I., McDougall S.R., Ezeuko C.C., Hamon G. (2010) Pore-scale simulation of hysteresis effects during repressurization of gas-oil systems, SPE Annual Technical Conference and Exhibition held in Florence, Italy, 19–22 September 2010. SPE-134525. [Google Scholar]
  • Grattoni C.A., Hawes R.I., Dawe R.A. (1998) Relative permeabilities for the production of solution gas from watereflood residual oil, in: 1998 Annual Symposium of the Society of Core Analysts, SCA-9817. [Google Scholar]
  • Petersen E.B. Jr, Agaev G.S., Palatnik B., Ringen J.K., Øren P.E., Vatne K.O. (2004) Determination of critical gas saturation and relative permeabilities relevant to the depressurization of the Statfjord Field, in: International Symposium of the Society of Core Analysts held in Abu Dhabi, UAE, 5–9 October, 2004. SCA2004-33. [Google Scholar]
  • Kim T.W., Kovscek A.R. (2019) The effect of voidage-displacement ratio on critical gas saturation, SPE J. 24, 01, 178–199. [CrossRef] [Google Scholar]
  • Xu X., Wang J., Lv J.-P., Deng Y. (2014) Simultaneous analysis of three-dimensional percolation models, Front. Phys. 9, 1, 113–119. [CrossRef] [Google Scholar]
  • Jan N., Stauffer D. (1998) Random site percolation in three dimensions, Int. J. Modern Phys. C 09, 02, 341–347. [CrossRef] [Google Scholar]
  • Sykes M.F., Essam J.W. (1964) Critical percolation probabilities by series method, Phys. Rev. 133, 1A, A310–A315. [CrossRef] [Google Scholar]
  • Van der Marck S.C. (1998) Calculation of percolation thresholds in high dimensions for FCC, BCC and diamond lattices, Int. J. Modern Phys. C 9, 4, 529–540. [CrossRef] [Google Scholar]
  • Powell M.J. (1979) site percolation in randomly packed spheres, Phys. Rev. B 20, 10, 4194–4198. [CrossRef] [Google Scholar]
  • Bull O., Bratteli F., Ringen J.K., Melhuus K., Bye A.L., Iversen J.E. (2011) The quest for the true residual gas saturation – an experimental approach, in: International Symposium of the Society of Core Analysts held in Austin, Texas, USA, 18–21 September, 2011. SCA2011-03. [Google Scholar]
  • Cense A., Reed J., Egermann P. (2016) SCAL for gas reservoirs: A contribution for better experiments, in: International Symposium of the Society of Core Analysts held in Snowmass, Colorado, USA, 21–26 August 2016. Paper SCA2016-023. [Google Scholar]
  • Satik C., Robertson C., Kalpacki B., Gupta D. (2004) A study of heavy oil solution gas drive for Hamaca Field: Depletion studies and interpretations, in: SPE Paper 86967 presented at the SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting, Bakersfield, CA, 16–18, March. [Google Scholar]
  • Lenormand R., Touboul E., Zarcone C. (1988) Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165–187. [Google Scholar]
  • Berg S., Oedai S., Landman A.J., Brussee N., Boele M., Valdez R., van Gelder K. (2010) Miscible displacement of oils by carbon disulfide in porous media: Experiments and analysis, Phys. Fluids 22, 113102. [CrossRef] [Google Scholar]
  • Berg S., Ott H. (2012) Stability of CO2-brine immiscible displacement, Int. J. Greenhouse Gas Control 11, 188–203. [CrossRef] [Google Scholar]
  • Ji W., Dahmani A., Ahlfeld D.P., Lin J.D., Hill E. III (1993) Laboratory study of air sparging: Air flow visualization, Groundwater Monit. Remediat. 13, 4, 115–126. [CrossRef] [Google Scholar]
  • Plummer C.R., Nelson J.D., Zumwalt G.S. (1997) Horizontal and vertical well comparison for in-situ air sparging, Ground Water Monit. Rev. 17, 1, 91–96. [CrossRef] [Google Scholar]
  • Mumford K.G. (2008) Spontaneous expansion and mobilization of gas above DNAPL, PhD Thesis, McMaster University. [Google Scholar]
  • Zou S., Armstrong R.T., Arns J.Y., Arns C.H., Hussain F. (2018) Experimental and theoretical evidence for increased ganglion dynamics during fractional flow in mixed-wet porous media, Water Resour. Res. 54, 5, 3277–3289. [CrossRef] [Google Scholar]
  • Armstrong R.T., McClure J.E., Berrill M.A., Rücker M., Schlüter S., Berg S. (2016) Beyond Darcy’s law: The role of phase topology and ganglion dynamics for two fluid flow, Phys. Rev. E 94, 043113. [CrossRef] [PubMed] [Google Scholar]
  • Berg S., Gao Y., Georgiadis A., Brussee N., Coorn A., van der Linde H., Dietderich J., Alpak F.O., Eriksen D., Mooijer-van den Heuvel M., Southwick J., Appel M., Wilson O.B. (2019) Determination of critical gas saturation by micro-CT, in: 2019 Annual Symposium of the Society of Core Analysts, Aug 25–29, Pau, France, Paper SCA2019-021. [Google Scholar]
  • Berg S., Gao Y., Georgiadis A., Brussee N., Coorn A., van der Linde H., Dietderich J., Alpak F.O., Eriksen D., Mooijer-van den Heuvel M., Southwick J., Appel M., Wilson O.B. (2020) Determination of critical gas saturation by micro-CT, Petrophysics 61, 2, 133–150. [Google Scholar]
  • van Wageningen W.F.C., Maas J.G. (2007) Reservoir simulation and interpretation of the RECOPOL ECMB pilot in Poland, in: 2007 International Coalbed Methane Symposium, Paper 072. [Google Scholar]
  • Garfi G., John C.M., Lin Q., Berg S., Krevor S. (2020) Fluid surface coverage showing the controls of rock mineralogy on the wetting state, Geophys. Res. Lett. 47, 8, e2019GL086380. [CrossRef] [Google Scholar]
  • Buades A., Coll B., Morel J.-M. (2005) A non-local algorithm for image denoising, in: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2, pp. 60–65. [CrossRef] [Google Scholar]
  • Alpak F.O., Gray F., Saxena N., Dietderich J., Hofmann R., Berg S. (2018) A distributed parallel multiple-relaxation-time lattice Boltzmann method on graphic processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images, Comput. Geosci. 22, 3, 815–832. [CrossRef] [Google Scholar]
  • Alpak F.O., Zacharoudiou I., Berg S., Dietderich J., Saxena N. (2019) Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units, Comput. Geosci. 23, 5, 849–880. [CrossRef] [Google Scholar]
  • Bhatnagar P.L., Gross E.P., Krook M. (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94, 511–525. [CrossRef] [Google Scholar]
  • D’Humières D., Ginzburg I., Krafcyzk M., Lallemand P., Luo L.-S. (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R. Soc. A. 360, 437–451. [CrossRef] [MathSciNet] [Google Scholar]
  • Roof J.G. (1970) Snap-off of oil droplets in water-wet pores, SPE J. 10, 1, 85–90. [Google Scholar]
  • Berg S., Armstrong R.T., Ott H., Georgiadis A., Klapp S., Schwing A., Neiteler R., Brussee N., Makurat A., Leu L., Enzmann F., Schwarz J.-O., Wolf M., Khan F., Kersten M., Irvine S., Stampanoni M. (2014) Multiphase flow in porous rock imaged under dynamic flow conditions with fast X-ray computed microtomography, Petrophysics 55, 4, 304–312. [Google Scholar]
  • Evseev N., Armstrong R.T., Berg S., Dinariev O., Klemin D., Koroteev D., Safonov S. (2016) Modeling of pore-scale two-phase flow phenomena using density functional hydrodynamics, Transp. Porous Media 112, 3, 577–607. [CrossRef] [Google Scholar]
  • Rücker M., Berg S., Armstrong R.T., Georgiadis A., Ott H., Schwing A., Neiteler R., Brussee N., Makurat A., Leu L., Wolf M., Khan F., Enzmann F., Kersten M. (2015) From connected pathway flow to ganglion dynamics, Geophys. Res. Lett. 42, 3888–3894. [CrossRef] [Google Scholar]
  • Reamer H.H., Opfell J.B., Sage B.H. (1956) Diffusion coefficients in hydrocarbon systems, methane-decane-methane in liquid phase, Ind. Eng. Chem. 48, 2, 275–282. [CrossRef] [Google Scholar]
  • Bartels W.-B., Rücker M., Berg S., Mahani H., Georgiadis A., Fadili A., Brussee N., Coorn A., van der Linde H., Hinz C., Jacob A., Wagner C., Henkel S., Enzmann F., Bonnin A., Stampanoni M., Ott H., Blunt M., Hassanizadeh M. (2017) Fast X-ray micro-CT study of the impact of brine salinity on the pore-scale fluid distribution during waterflooding, Petrophysics 58, 1, 36–47. [Google Scholar]
  • Maheshwari S., van Kruijsdijk C., Sanyal S., Harvey A.D. (2020) Nucleation and growth of a nanobubble on rough surfaces, Langmuir 36, 4108–4415. [CrossRef] [PubMed] [Google Scholar]
  • Bultreys T., Sing K., Raeini A.Q., Ruspini L.C., Oren P.-E., Berg S., Rücker M., Bijeljic B., Blunt M.J. (2019) Verifying pore network models of imbibition in rocks using time-resolved synchrotron imaging, Water Resour. Res. 56, 6, e2019WR026587. [Google Scholar]
  • Xu K., Bonnecaze R., Balhoff M. (2017) Egalitarianism among bubbles in porous media: An Ostwald ripening derived anticoarsening phenomenon, Phys. Rev. Lett. 119, 264502. [CrossRef] [PubMed] [Google Scholar]
  • de Chalendar J.A., Garing C., Benson S.M. (2018) Pore-scale modelling of Ostwald ripening, J. Fluid Mech. 835, 363–392. [CrossRef] [Google Scholar]
  • Xu K., Mehmani Y., Shang L., Xiong Q. (2019) Gravity-induced bubble ripening in porous media and its impact on capillary trapping stability, Geophys. Res. Lett. 46, 13, 804–813. [CrossRef] [Google Scholar]
  • Herring A.L., Andersson L., Schlüter S., Sheppard A., Wildenschild D. (2015) Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trapping in porous media, Adv. Water Resour. 79, 91. [CrossRef] [Google Scholar]
  • McClure J.E., Armstrong R.T., Berrill M.A., Schlüter S., Berg S., Gray W.G., Miller C.T. (2018) A geometric state function for two-fluid flow in porous media, Phys. Rev. Fluids 3, 8, 084306. [CrossRef] [Google Scholar]
  • Armstrong R.T., McClure J.E., Robins V., Liu Z., Arns C.H., Schlüter S., Berg S. (2019) Porous media characterization using Minkowski functionals: Theories, applications and future directions, Transp. Porous Media 130, 305–335. https://doi.org/10.1007/s11242-018-1201-4. [CrossRef] [Google Scholar]
  • Schlüter S., Berg S., Rücker M., Armstrong R.T., Vogel H.-J., Hilfer R., Wildenschild D. (2016) Pore scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media, Water Resour. Res. 52, 3, 2194–2205. [CrossRef] [Google Scholar]
  • Alzayer A., Voskov D.V., Tchelepi H.A. (2018) Relative permeability of near-miscible fluids in compositional simulators, Trans. Porous Med. 122, 3, 547–573. [CrossRef] [Google Scholar]
  • Berg S., Rücker M., Ott H., Georgiadis A., van der Linde H., Enzmann F., Kersten M., Armstrong R.T., de With S., Becker J., Wiegmann A. (2016) Connected pathway relative permeability from pore scale imaging of imbibition, Adv. Water Resour. 90, 24–35. [CrossRef] [Google Scholar]
  • Liu Z., Herring A., Sheppard A., Arns C., Berg S., Armstrong R.T. (2017) Morphological characterization of two-phase flow using X-ray microcomputed tomography flow-experiments, Transp. Porous Media 118, 1, 99–117. [CrossRef] [Google Scholar]
  • Rücker M., Bartels W.-B., Garfi G., Shams M., Bultreys T., Boone M., Pieterse S., Maitland G.C., Krevor S., Cnudde V., Mahani H., Berg S., Georgiadis A., Luckham P.F. (2020) Relationship between wetting and capillary pressure in a crude oil/brine/rock system: From nano-scale to core-scale, J. Colloid Interface Sci. 562, 7, 159–169. [CrossRef] [PubMed] [Google Scholar]
  • Lin Q., Bijeljic B., Krevor S.C., Blunt M.J., Rücker M., Berg S., Coorn A., van der Linde H., Georgiadis A., Wilson O.B. (2019) A new waterflood initialization protocol for pore-scale multiphase flow experiments, Petrophysics 60, 02, 264–272. [Google Scholar]
  • Vachaparambil K.J., Einarsrud K.E. (2018) Explanation of bubble nucleation mechanisms: A gradient theory approach, J. Electrochem. Soc. 165, 10, E504–E512. [CrossRef] [Google Scholar]
  • Fletcher N.H. (1958) Size effect in heterogeneous nucleation, J. Chem. Phys. 29, 572. [CrossRef] [Google Scholar]
  • Thanh N.T.K., Maclean N., Mahiddine S. (2014) Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114, 15, 7610–7630. [CrossRef] [PubMed] [Google Scholar]
  • Aursand P., Gjennestad M.Aa, Aursand E., Hammer M., Wilhelmsen Ø. (2017) The spinodal of a single and multi-component fluids and its role in the development of modern equations of state, Fluid Phase Equilib. 436, 98–112. [CrossRef] [Google Scholar]
  • Liger-Belair G., Marchal R., Jeandet P. (2002) Close-up on bubble nucleation in a glass of champagne, Am. J. Enol. Vitic. 53, 2, 151–153. [Google Scholar]
  • Gomis A.M., Reyes-Labarta J.A., Cayuelas M.D.S., del Mar Olaya Lopez M. (2011) GE models and algorithms for condensed phase equilibrium data regression in ternary systems: Limitations and proposals, Open Thermodyn. J. 5, Suppl 1–M4, 48–62. [CrossRef] [Google Scholar]
  • Marcilla A., Serrano M.D., Reyes-Labarta J.A., Olaya M.M. (2012) Checking liquid-liquid pait point conditions and their application in ternary systems, Ind. Eng. Chem. Res. 51, 5098-51–5098-52. [Google Scholar]
  • Koroteev D., Dinariev O., Evseev N., Klemin D., Safonov S., Gurpinar O., Berg S., van Kruijsdijk C., Myers M., Hathon L., de Jong H., Armstrong R. (2013) Application of digital rock technology for chemical EOR screening, in: SPE Enhanced Oil Recovery Conference held in Kuala Lumpur, Malaysia, 2–4 July 2013. SPE-165258. [Google Scholar]
  • Dinariev O.Y., Evseev N.E. (2008) Filtration of a gas-condensate mixture near the hydraulic fracture, J. Eng. Phys. Thermophys. 81, 3, 429–437. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.