Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 44
Number of page(s) 11
Published online 17 June 2021
  • Andra (2005) Dossier (2005) Argile – evaluation de la faisabilité du stockage géologique en formation argileuse profonde – Rapport de synthèse, Andra, France. Juin 2005. Available at: [Google Scholar]
  • Bachmann L., Mayer E. (1987) Physics of water and ice: Implications for cryofixations, in: Steinbrecht R.A., Zierold K. (eds), Cryotechniques in biological electron microscopy, Springer, Berlin. [Google Scholar]
  • Bakhshian S., Hosseini S.A., Lake L.W. (2020) CO2-brine relative permeability and capillary pressure of Tuscaloosa sandstone: Effect of anisotropy, Adv. Water Resour. 135, 103464. [Google Scholar]
  • Bear J., Breaster C. (1987) Effective and relative permeability of anistropic porous media, Transp. Porous Media 2, 301–316. [Google Scholar]
  • Borysenko A., Clennell B., Sedev R., Burgar I., Ralston J., Raven M., Dewhurst D., Liu K. (2009) Experimental investigation of the wettability of clays and shales, J. Geophys. Res. 114, B07202. [Google Scholar]
  • Dathe A., Eins S., Niemeyer J., Gerold G. (2001) The surface fractal dimension of the soil-pore interface as measured by image analysis, Geodema 103, 203–229. [Google Scholar]
  • Davies P.B. (1991) Evaluation of the role of threshold pressure in controlling flow of waste-generated gas into bedded salt at the Waste Isolation Pilot Plant (WIPP). Sandia Rep. SAND 90–3246, Sandia National Laboratories, Albuquerque, New Mexico. [Google Scholar]
  • Ferrari A., Laloui L. (2012) Advances in testing the hydro-mechanical behaviour of shales, in: Laloui L., Ferrari A. (eds), Multiphysical testing of soils and shales, Springer, pp. 57–68. [Google Scholar]
  • Ferrari A., Favero V., Marschell P., Laloui L. (2014) Experimental analysis of the wáter retention behaviour of shales, Int. J. Rock Mech. Min. Sci. 72, 61–70. [Google Scholar]
  • Hipert M., Miller C. (2001) Pore-morphology-based simulation of drainage in totally wetting porous media, Adv. Water Resour. 24, 243–255. [CrossRef] [Google Scholar]
  • Katz A.J., Thompson A.H. (1985) Fractal sandstone pores: Implications for conductivity and formation, Phys. Rev. Lett. 54, 1325–1328. [CrossRef] [PubMed] [Google Scholar]
  • Keller L.M., Holzer L., Wepf R., Gasser P. (2011) 3D Geometry and topology of pore pathways in Opalinus clay: Implications for mass transport, Appl. Clay Sci. 52, 85–95. [CrossRef] [Google Scholar]
  • Keller L.M., Schuetz P., Gasser P., Holzer L. (2013) Pore-space relevant for gas-permeability in Opalinus Clay: Statistical analysis of homogeneity, percolation and representative volume element, J. Geophys. Res.: Solid Earth 118, 2799–2812. [CrossRef] [Google Scholar]
  • Kou J., Wu F., Lu H., Xu Y., Song F. (2009) The effective thermal conductivity of porous media based on statistical self-similarity, Phys. Lett. A 374, 62–65. [CrossRef] [Google Scholar]
  • Marschall P., Horseman S., Gimmi T. (2005) Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 60, 1, 121–139. [CrossRef] [Google Scholar]
  • Münch B., Holzer L. (2008) Contraticting geometrical concepts in pore size analyzes attained with electron microscopy and mercury intrusion, J. Am. Ceram. Soc. 91, 4059–4067. [CrossRef] [Google Scholar]
  • Muñoz J.J., Lloret A., Alonso E. (2003) “VE” Experiment – Laboratory Report: Characterization of hydraulic properties under saturated and non saturated conditions Project Deliverable 4, EC contract FIKW-CT2001-00126. [Google Scholar]
  • Nagra (2002) Projekt Opalinuston-Synthese der geowissenschafftlichen Untersuchungsergebnisse. Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle, Nagra Technical Report NTB 02–03, Nagra Weinfelden, Switzerland. [Google Scholar]
  • Nagra (2004) Effects of post-disposal gas generation in a repository for spent fuel, highlevel waste and long-lives intermediate waste sited in the Opalinus Clay, Nagra Technical Report NTB 04–06, Nagra, Wettingen, Switzerland. [Google Scholar]
  • Nagra (2013) Gas related property distributions in the proposed host rock formations of the candidate siting regions in Northern Switzerland and in the Helvetic Zone, Nagra Arbeitsbericht NAB 13-83, Nagra Weinfelden, Switzerland. [Google Scholar]
  • Romero E., Gómez R. (2013) Water and air permeability tests on deep core samples from Schlattingen SLA-1 borehole, Nagra Arb. Ber. NAB 13-51. Nagra, Wettingen, Switzerland. [Google Scholar]
  • Wang C., Yao J., Wu K., Ren G., Sun H., Yang Y., Gao Y., Chen Z. (2014) Organic and inorganic pore structure analysis in shale matrix with superposition method, in: Unconventional Resources Technology Conference (URTeC). [Google Scholar]
  • Wiegmann A., Iliev O., Schindelin A. (2010) Computer aided engineering of filter materials and pleated filters, in: Global guide of the filtration and separation industry, E. von der Luehe. VDL Verlag, Roedermark, Germany, pp. 191–198. [Google Scholar]
  • Yu B., Li J. (2001) Some fractal characters of porous media, Fractals 9, 365–372. [Google Scholar]
  • Yu B.M., Cheng P. (2002) A fractal permeability model for bi-dispersed porous media, Int. J. Heat Mass Transfer 45, 14, 2983. [CrossRef] [Google Scholar]
  • Zhang C.-L., Rothfuchs T. (2007) Moisture effects on argillaceous rocks, in: Schanz T. (ed), Proceedings 2nd International Conference of Mechanics of Unsaturated Soils, Springer Proceedings in Physics, Vol. 112, pp. 319–326. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.