Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 63
Nombre de pages 10
Publié en ligne 29 septembre 2021
  • Zou C., Yang Z. (2019) Establishment and practice of unconventional oil and gas geology, Acta Geol. Sin. 93, 01, 12–23. [Google Scholar]
  • Su J.L., Zhao Y., He T., Luo P.Y. (2021) Prediction of drilling leakage locations based on optimized neural networks and the standard random forest method, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 76, 24. [Google Scholar]
  • Deng Y., Guo R., Tian Z.Y., Zhao L.M., Hu D.D., Liu H.Y., Liu Y. (2020) Water saturation modeling using modified J-function constrained by rock typing method in bioclastic limestone, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 75, 66. [Google Scholar]
  • Shafiabadi M., Kamkar-Rouhani A., Sajadi S.M. (2021) Identification of the fractures of carbonate reservoirs and determination of their dips from FMI image logs using Hough transform algorithm, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 76, 37. [Google Scholar]
  • Bourbiaux B. (2010) Fractured reservoir simulation: a challenging and rewarding issue, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 65, 2, 227–238. [Google Scholar]
  • Flaum C., Galford J.E., Hasting A. (1989) Enhanced vertical resolution processing of dual detector gamma–gamma density logs, The Log Analyst 29, 5, 6, 150–157. [Google Scholar]
  • Nelson R.J., Mitchell W.K. (1992) Improved vertical resolution of well logs by resolution matching, The Log Analyst 32, 4, 281–301. [Google Scholar]
  • Liu Y.M., Zou C.C. (2006) A new method of high-resolution processing of well Logs based on genetic algorithm, Prog. Geophys. 21, 4, 1202–1207. [Google Scholar]
  • Conaway J.G. (1980) Exact inverse filters for the deconvolution of gamma-ray logs, Geoexplorations 18, 1–14. [CrossRef] [Google Scholar]
  • Freedman R., Minerbo G.N. (June 1991) Maximum entropy inversion of induction-log data, SPE Form. Eval. 6, 02183–200. [CrossRef] [Google Scholar]
  • Tai Z.W., Cao S.M. (2005) Application of Walsh transform in improving logging curve resolution, J. Shengli Oilfield Staff Univ. 04, 47–48. [Google Scholar]
  • Li X., Zhang Z.H., Su H.C. (2015) Improving the resolution of logging curve based on window Fourier transform, Mod. Chem. Indus. 44, 06, 1406–1407. [Google Scholar]
  • Lu G.Y., Wong D.W. (2007) An adaptive inverse-distance weighting spatial interpolation technique, Comput. Geosci. 34, 9, 1044–1055. [Google Scholar]
  • Dong C., Loy C.C., He K., Tang X. (2016) Image super-resolution using deep convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38, 2, 295–307. [PubMed] [Google Scholar]
  • Yang J., Wright J., Huang T., Ma Y. (2010) Image super-resolution via sparse representation, Image Process. IEEE Trans. 19, 11, 2861–2873. [CrossRef] [Google Scholar]
  • Aharon M., Elad M., Bruckstein A. (2006) K-SVD: an algorithm for designing over complete dictionaries for sparse representation, IEEE Trans. Sig. Proc. 54, 11, 4311–4322. [CrossRef] [Google Scholar]
  • Jiang B. (2015) Method of improving acoustic well logging curve resolution based on compressed sensing, Petroleum Pipes Instrum. 1, 05, 34–36+41. [Google Scholar]
  • Ledig C., Theis L., Huszar F., Caballero J., Cunningham A., Acosta A., Aitken A., Tejani A., Totz J., Wang Z. (2017) Photo-realistic single image super-resolution using a generative adversarial network, IEEE Computer Soc. 2017, 105–114. [Google Scholar]
  • Volodymyr K., Zayd E.S., Stefano E. (2017) Audio super resolution using neural networks. [Google Scholar]
  • Lim T.Y., Yeh R.A., Xu Y., Do M.N., Hasegawa-Johnson M. (2018) Time-frequency networks for audio super-resolution, in: ICASSP 2018 – 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. [Google Scholar]
  • Chang H., Yeung D.Y., Xiong Y. (2004) Super-resolution through neighbor embedding, in: IEEE Computer Society Conference on Computer Vision & Pattern Recognition, IEEE. [Google Scholar]
  • Zhang D.P., Fan C.K., Kuang D.Q. (2019) Impact assessment of interlayers on geological storage of carbon dioxide in Songliao Basin, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 74, 85. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.