Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 45
Number of page(s) 15
Published online 18 June 2021
  • Saboorian-Jooybari H. (2015) Analytical estimation of water-oil relative permeabilities through fractures, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 71/3, 31, 1–17. [Google Scholar]
  • Luo E., Fan Z., Hu Y., Zhao L., Wang J. (2019) An evaluation on mechanisms of miscibility development in acid gas injection for volatile oil reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 74, 59, 1–10. [Google Scholar]
  • De Sant’ana H.B., Ungerer P., Batut C., Moracchini G., Sanchez J., Carrier J., Jensen D.M. (1998) Measurement and prediction of volumetric and transport properties of reservoir fluids at high pressure, Rev. Inst. Fr. Pét. 53/3, 265–281. [Google Scholar]
  • Liu H., Cheng L., Xiong H., Huang S. (2017) Effects of solvent properties and injection strategies on solvent-enhanced steam flooding for thin heavy oil reservoirs with semi-analytical approach, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 72/4, 20, 1–14. [Google Scholar]
  • Zhou M., Bu J., Wang J., Guo X., Huang J., Huang M. (2018) Study on three phase foam for Enhanced Oil Recovery in extra-low permeability reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 73, 55, 1–8. [Google Scholar]
  • Hussaina A.A.A., Vincent-Bonnieu S., Bahrim R.Z., Pilus R.M., Rossen W.R. (2020) Impact of crude oil on pre-generated foam in porous media, J. Pet. Sci. Eng. 185, 106628. [Google Scholar]
  • Manzoor A.A. (2020) Modeling and simulation of polymer flooding with time-varying injection pressure, ACS Omega 5, 10, 5258–5269. [CrossRef] [PubMed] [Google Scholar]
  • Mahdaviara M., Helalizadeh A. (2020) A proposed capillary number dependent model for prediction of relative permeability in gas condensate reservoirs: a robust non-linear regression analysis, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 75, 24, 1–21. [Google Scholar]
  • Ponce R.V., Carvalho M.S., Alvarado V. (2014) Oil recovery modeling of macro-emulsion flooding at low capillary number, J. Pet. Sci. Eng. 119, 112–122. [Google Scholar]
  • Thomas S. (2007) Enhanced oil recovery – an overview, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 63/1, 9, 9–19. [Google Scholar]
  • Li H., Zheng S., Yang D. (2013) Enhanced swelling effect and viscosity reduction of solvent(s)/CO2/heavy-oil systems, SPE 18, 4, 695–707. [Google Scholar]
  • Rezk M.G., Foroozesh J. (2018) Determination of mass transfer parameters and swelling factor of CO2-oil systems at high pressures, Int. J. Heat. Mass. Transf. 126, 380–390. [Google Scholar]
  • Arinelli L.O., Medeiros J.L., Araújo O.Q. (2015) Performance analysis and comparison of membrane permeation versus supersonic separators for CO2 removal from a plausible natural gas of Libra field, Brazil, in: Paper presented at the OTC Brasil, Rio de Janeiro. [Google Scholar]
  • Fraga C.T., Pinto A.C., Branco C.C., Pizarro J.O., Paulo C.A. (2015) Brazilian pre-salt: An impressive journey from plans and challenges to concrete results, in: Paper presented at the Offshore Technology Conference, Houston, Texas, USA. [Google Scholar]
  • Ju B., Wu Y.S., Qin J. (2015) Computer modeling of the displacement behavior of carbon dioxide in undersaturated oil reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 70/6, 951–965. [Google Scholar]
  • Wang Z., Zhang Y., Liao H. (2020) Experimental investigation on precipitation damage during water alternating flue gas injection, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 75, 45, 1–13. [Google Scholar]
  • Ferreira F.A., Barbalho T.C., Araújo I.R., Oliveira H.N., Chiavone-Filho O. (2018) Characterization, pressure–volume–temperature properties, and phase behavior of a condensate gas and crude oil, Energy Fuels 32, 4, 5643–5649. [Google Scholar]
  • He C., Mu L., Xu A., Zhao L., He J., Zhang A., Shan F., Luo E. (2019) Phase behavior and miscible mechanism in the displacement of crude oil with associated sour gas, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 74, 54, 1–9. [Google Scholar]
  • Dezfuli M.G., Jafari A., Gharibshahi R. (2020) Optimum volume fraction of nanoparticles for enhancing oil recovery by nanosilica/supercritical CO2 flooding in porous medium, J. Pet. Sci. Eng. 185, 106599. [Google Scholar]
  • Santos D.C., Filipakis S.D., Lima E.R., Paredes M.L. (2019) Solubility parameter of oils by several models and experimental oil compatibility data: implications for asphaltene stability, Pet. Sci. Technol. 37, 13, 1596–1602. [Google Scholar]
  • Zhang L., Zhang L., Xu Z., Guo X., Xu C., Zhao S. (2019) Viscosity mixing rule and viscosity–temperature relationship estimation for oil sand bitumen vacuum residue and fractions, Energy Fuels 33, 1, 206–214. [Google Scholar]
  • Arrhenius S.A. (1887) Über die Dissociation der in Wasser gelösten Stoffe, Z. Phys. Chem. 1, 631–648 (in German). [Google Scholar]
  • Bingham E.C. (1914) The viscosity of binary mixtures, J. Phys. Chem. 18, 2, 157–165. [Google Scholar]
  • Kendall J., Monroe K. (1917) The viscosity of liquids II. The viscosity-composition curve for ideal liquid mixtures, J. Am. Chem. Soc. 39, 9, 1787–1802. [Google Scholar]
  • Lederer E.L. (1933) Viscosity of mixtures with and without diluents, in: Presented at 1st World Petroleum Congress, London, UK. [Google Scholar]
  • Shu W.R. (1984) A viscosity correlation for mixtures of heavy oil, bitumen, and petroleum fractions, SPE 24, 3, 277–282. [Google Scholar]
  • Cragoe C.S. (1933) Changes in the viscosity of liquids with temperature, pressure and composition, in: Paper presented at the 1st World Petroleum Congress, London, UK. [Google Scholar]
  • Miadonye A., Latour N., Puttagunta V.R. (2000) A correlation for viscosity and solvent mass fraction of bitumen-diluent mixtures, Pet. Sci. Technol. 18, 1–2, 1–14. [Google Scholar]
  • Nourozieh H., Kariznovi M., Abedi J. (2015) Modeling and measurement of thermo-physical properties for Athabasca bitumen and n-heptane mixtures, Fuel 157, 73–81. [Google Scholar]
  • Baird C.T. (1989) Guide to petroleum product blending, HPI Consultants, Inc., Austin, Texas. [Google Scholar]
  • Riazi M.R. (2005) Characterization and properties of petroleum fractions, American Society and Testing Materials, Philadelphia. [Google Scholar]
  • Centeno G., Reyna G.S., Ancheyta J., Muñoz J.A., Cardona N. (2011) Testing various mixing rules for calculation of viscosity of petroleum blends, Fuel 90, 12, 3561–3570. [Google Scholar]
  • Nourozieh H., Kariznovi M., Abedi J. (2014) Measurement and prediction of density for the mixture of Athabasca bitumen and pentane at temperatures up to 200 °C, Energy Fuels 28, 5, 2874–2885. [Google Scholar]
  • Hernández E.A., Reyna G.S., Ancheyta J. (2019) Comparison of mixing rules based on binary interaction parameters for calculating viscosity of crude oil blends, Fuel 249, 198–205. [CrossRef] [Google Scholar]
  • Mehrotra A.K. (1992) A mixing rule approach for predicting the viscosity of CO2-saturated cold lake bitumen and bitumen fractions, J. Pet. Sci. Eng. 6, 4, 289–299. [Google Scholar]
  • Duncan A.M., Ahosseini A., McHenry R., Depcik C.D., Williams S.M., Scurto A.M. (2010) High-pressure viscosity of biodiesel from soybean, canola, and coconut oils, Energy Fuels 24, 10, 5708–5716. [Google Scholar]
  • Barabás I., Todorut I.A. (2011) Predicting the temperature dependent viscosity of biodiesel–diesel–bioethanol blends, Energy Fuels 25, 12, 5767–5774. [Google Scholar]
  • Muhammad A., Azeredo R.B.V. (2014) 1H NMR spectroscopy and low-field relaxometry for predicting viscosity and API gravity of Brazilian crude oils – A comparative study, Fuel 130, 126–134. [Google Scholar]
  • Dehaghani A.H.S., Badizad M.H. (2016) Experimental study of Iranian heavy crude oil viscosity reduction by diluting with heptane, methanol, toluene, gas condensate and naphtha, Petroleum 2, 4, 415–424. [Google Scholar]
  • Pallares F.R., Taylor S.D., Satyro M.A., Marriott R.A., Yarranton H.W. (2016) Prediction of viscosity for characterized oils and their fractions using the expanded fluid model, Energy Fuels 30, 9, 7134–7157. [Google Scholar]
  • Liu Z., Wu G., Wei C. (2020) Physical experiments and numerical simulations of viscosity reducer flooding for ordinary heavy oil, J. Pet. Sci. Eng. 192, 107194. [Google Scholar]
  • Sánchez N.M., Klerk A. (2020) Viscosity mixing rules for bitumen at 1–10 wt% solvent dilution when only viscosity and density are known, Energy Fuels 34, 7, 8227–8238. [Google Scholar]
  • Ratcliff G.A., Khan M.A. (1971) Prediction of the viscosities of liquid mixtures by a group solution model, Can. J. Chem. Eng. 49, 125–129. [Google Scholar]
  • Lian L., Qin J., Yang S., Yang Y., Li S., Chen X. (2014) An improved viscosity model for CO2-crude system, Petrol. Explor. Develop. 41, 5, 648–653. [Google Scholar]
  • Peng R.Y., Robinson D.B. (1976) A new two constant equation of state, Ind. Eng. Chem. Fundam. 15, 1, 59–64. [Google Scholar]
  • Nazeri M., Chapoy A., Burgass R., Tohidi B. (2018) Viscosity of CO2-rich mixtures from 243 K to 423 K at pressures up to 155 MPa: new experimental viscosity data and modelling 118, 100–114. [Google Scholar]
  • Seyyedi M., Mahzari P., Sohrabi M. (2018) A comparative study of oil compositional variations during CO2 and carbonated water injection scenarios for EOR, J. Pet. Sci. Eng. 164, 685–695. [Google Scholar]
  • Nasrabadi H., Firoozabadi A., Tausif K.A. (2009) Complex flow and composition path in CO2 injection schemes from density effects in 2 and 3D, in: Paper presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana. [Google Scholar]
  • Elias A., Trevisan O.V. (2016) An experimental investigation on phase behavior of a light oil and CO2, J. Pet. Sci. Eng. 145, 22–33. [Google Scholar]
  • Ashcroft S., Ben Isa M. (1997) Effect of dissolved gases on the densities of hydrocarbons, J. Chem. Eng. Data 42, 6, 1244–1248. [Google Scholar]
  • Nasir F.M., Nurul A.A. (2008) Miscible CO2 injection: Sensitivity to fluid properties, in: Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia. [Google Scholar]
  • Lansangan R.M., Smith J.L. (1993) Viscosity, density, and composition measurements of CO2/West Texas oil systems, SPE Res. Eng. 8, 175–182. [Google Scholar]
  • Valero A.M.C., Feitosa F.X., Sant’Ana H.B. (2020) Density and volumetric behavior of binary CO2 + n-decane and ternary CO2 + n-decane + naphthalene systems at high pressure and high temperature, J. Chem. Eng. Data 65, 7, 3499–3509. [Google Scholar]
  • Santos D.C., Gonçalves I.S., Mehl A., Couto P., Paredes M.L.L. (2021) Density of n-Heptane + n-Dodecane and Carbon Dioxide + n-Heptane + n-Dodecane Mixtures up to 70 MPa from (293.15 to 363.15) K, J. Chem. Eng. Data 66, 3, 1305–1318. [Google Scholar]
  • Katz D.L., Firoozabadi A. (1978) Predicting Phase behavior of condensate/crude-oil systems using methane interaction coefficients, SPE 30, 11, 1649–1655. [Google Scholar]
  • Lagourette B., Boned C., Guirons H., Xans P., Zhou H. (1992) Densimeter calibration method versus temperature and pressure, Meas. Sci. Technol. 3, 8, 699–703. [Google Scholar]
  • Comuñas M.J., Bazile J.P., Baylaucq A., Boned C. (2008) Density of diethyl adipate using a new vibrating tube densimeter from (293.15 to 403.15) K and up to 140 MPa. Calibration and measurements, J. Chem. Eng. Data 53, 4, 986–994. [Google Scholar]
  • Wagner W., Pruss A. (2002) The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data 31, 2, 387–535. [NASA ADS] [CrossRef] [Google Scholar]
  • Span R., Wagner W. (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at Pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25, 6, 1509–1596. [NASA ADS] [CrossRef] [Google Scholar]
  • Peng Z., Li X., Sun Z. (2020) A relative permeability model for CBM reservoir, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 75, 2, 1–9. [Google Scholar]
  • Lobe V.M. (1973) A model for the viscosity of liquid–liquid mixtures, M.Sc Thesis, University of Rochester, New York. [Google Scholar]
  • Bermúdez M.M., Molina L.A., Tiburcio W.E., Luna L.A., Solis O.E. (2013) (p, ρ, T) Behavior for the binary mixtures carbon dioxide + heptane and carbon dioxide + tridecane, J. Chem. Eng. Data 58, 5, 1255–1264. [Google Scholar]
  • Zhang Y., Liu Z., Liu W., Zhao J., Yang M., Liu Y., Wang D., Song Y. (2014) Measurement and modeling of the densities for CO2 + dodecane system from 313.55 K to 353.55 K and pressures up to 18 MPa, J. Chem. Eng. Data 59, 11, 3668–3676. [Google Scholar]
  • Bazile J.P., Nasri D., Hamani A.W., Galliero G., Daridon J.L. (2018) Excess volume, isothermal compressibility, isentropic compressibility and speed of sound of carbon dioxide + n-heptane binary mixture under pressure up to 70 MPa. I Experimental Measurements, J. Supercrit. Fluid. 140, 218–232. [Google Scholar]
  • Bazile J.P., Nasri D., Hamani A.W., Galliero G., Daridon J.L. (2019) Density, speed of sound, compressibility, and excess properties of carbon dioxide + n-dodecane binary mixtures from 10 to 70 MPa, J. Chem. Eng. Data 64, 7, 3187–3204. [Google Scholar]
  • Tohidi B., Burgass R.W., Danesh A., Todd A.C. (2001) Viscosity and density of methane + methylcyclohexane from (323 to 423) K and pressures to 140 MPa, J. Chem. Eng. Data 46, 2, 385–390. [Google Scholar]
  • Regueira T., Pantelide G., Yan W., Stenby E.H. (2016) Density and phase equilibrium of the binary system methane + n-decane under high temperatures and pressures, Fluid Phase Equilib. 428, 48–61. [Google Scholar]
  • Luo E., Fan Z., Hu Y., Zhao L., Wang J. (2019) An evaluation on mechanisms of miscibility development in acid gas injection for volatile oil reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 59, 1–10. [CrossRef] [Google Scholar]
  • Kian K., Scurto A.M. (2018) Viscosity of compressed CO2-saturated n-alkanes: CO2/n-hexane, CO2/n-decane, and CO2/n-tetradecane, J. Supercrit. Fluid 133, 1, 411–420. [Google Scholar]
  • Fenghour A., Wakeham W.A., Vesovic V. (1998) The viscosity of carbon dioxide, J. Phys. Chem. Ref. Data 27, 31, 31–44. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.