Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Article Number 8
Number of page(s) 24
Published online 29 January 2021
  • Liu P., Yao J., Couples G.D., Ma J., Huang Z., Sun H. (2017) Modeling and simulation of wormhole formation during acidization of fractured carbonate rocks, J. Pet. Sci. Eng. 154, 284–301. [Google Scholar]
  • Ma G., Yun C., Yan J., Huidong W. (2018) Modelling temperature-influenced acidizing process in fractured carbonate rocks, Int. J. Rock Mech. Min. Sci. 105, 73–84. [CrossRef] [Google Scholar]
  • Szymczak P., Kwiatkowski K., Jarosinskí M., Kwiatkowski T., Osselin F. (2019) Wormhole formation during acidizing of calcite-cemented fractures in gas-bearing shales, SPE J. 24, 795–810. [CrossRef] [Google Scholar]
  • Zhao C., Hobbs B.E., Ord A., Hornby P., Peng S. (2008) Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks, Transp. Porous Media 73, 75–94. [Google Scholar]
  • Zhao C., Hobbs B.E., Ord A., Peng S. (2010) Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous media, Transp. Porous Media 82, 317–335. [Google Scholar]
  • Zhao C., Hobbs B.E., Ord A. (2010) Theoretical analyses of the effects of solute dispersion on chemical-dissolution front instability in fluid-saturated porous media, Transp. Porous Media 84, 629–653. [Google Scholar]
  • Buijse M.A. (2000) Understanding wormholing mechanisms can improve acid treatments in carbonate formations, SPE Prod. Facil. 15, 168–175. [CrossRef] [Google Scholar]
  • Hoefnger M.L., Fogler H.S. (1988) Pore evolution and channel formation during flow and reaction in porous media, AIChE J. 34, 45–54. [Google Scholar]
  • Fredd C.N., Fogler H.S. (1998) Influence of transport and reaction on wormhole formation in carbonate porous media, AIChE J. 44, 1933–1949. [Google Scholar]
  • Daccord G., Touboul E., Lenormand R. (1989) Carbonate acidizing: Toward a quantitative model of the wormholing phenomenon, SPE Prod. Eng. 4, 63–68. [CrossRef] [Google Scholar]
  • Daccord G., Lenormand R., Lietard O. (1993) Chemical dissolution of a porous medium by a reactive fluid – I. Model for the “wormholing” phenomenon, Chem. Eng. Sci. 48, 1, 169–178. [Google Scholar]
  • Daccord G., Lietard O., Lenormand R. (1993) Chemical dissolution of a porous medium by a reactive fluid – II. Convection vs. reaction, behavior diagram. Chem. Eng. Sci. 48, 1, 179–186. [Google Scholar]
  • Liu X., Ormond A., Bartko K., Ortoleva P. (1997) A geochemical reaction-transport simulator for matrix acidizing analysis and design, J. Pet. Sci. Eng. 17, 181–197. [Google Scholar]
  • Golfier F., Zarcone C., Bazin B., Lenormand R., Lasseux D., Quintard M. (2002) On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium, J. Fluid. Mech. 457, 213–254. [Google Scholar]
  • Panga M.K.R., Ziauddin M., Balakotaiah V. (2005) Two-scale continuum model for simulation of wormholes in carbonate acidization, AIChE J. 51, 3231–3248. [Google Scholar]
  • Maheshwari P., Balakotaiah V. (2013) Comparison of carbonate HCl acidizing experiments with 3D simulations, SPE Prod. Oper. 28, 4, 402–413. [Google Scholar]
  • Akanni O.O., Nasr-El-Din H.A., Gusain D. (2017) A computational Navier-Stokes fluid-dynamics-simulation study of wormhole propagation in carbonate-matrix acidizing and analysis of factors influencing the dissolution process, SPE J. 22, 6, 2-049. [CrossRef] [Google Scholar]
  • De Oliveira T.J.L., De Melo A.R., Oliveira J.A.A., Pereira A.Z.I. (2012) Numerical simulation of the acidizing process and PVBT extraction methodology including porosity/permeability and mineralogy heterogeneity, in: SPE International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers. [Google Scholar]
  • Wu Y., Salama A., Sun S. (2015) Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework, Comput. Geotech. 69, 564–577. [Google Scholar]
  • Wu Y. (2015) Parallel reservoir simulations with sparse grid techniques and applications to wormhole propagation. Diss. [Google Scholar]
  • Kou J., Sun S., Wu Y. (2016) Mixed finite element-based fully conservative methods for simulating wormhole propagation, Comput. Meth. Appl. Mech. Eng. 298, 279–302. [CrossRef] [Google Scholar]
  • Kou J., Sun S., Wu Y. (2019) A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy–Brinkman–Forchheimer model, J. Comput. Appl. Math. 348, 401–420. [Google Scholar]
  • Li X., Rui H. (2019) Superconvergence of a fully conservative finite difference method on non-uniform staggered grids for simulating wormhole propagation with the Darcy–Brinkman–Forchheimer framework, J. Fluid Mech. 872, 438–471. [Google Scholar]
  • Li X., Rui H., Chen S. (2019) A fully conservative block-centered finite difference method for simulating Darcy-Forchheimer compressible wormhole propagation, Numer. Algorithms 82, 2, 451–478. [Google Scholar]
  • Li X., Rui H. (2020) A fully conservative block-centered finite difference method for Darcy-Forchheimer incompressible miscible displacement problem, Numer. Meth. Partial Differ. Equ. 36, 1, 66–85. [CrossRef] [Google Scholar]
  • Wang Y., Sun S., Gong L., Yu B. (2018) A globally mass-conservative method for dual-continuum gas reservoir simulation, J. Nat. Gas Sci. Eng. 53, 301–316. [Google Scholar]
  • Falgout R.D., Yang U.M. (2002) hypre: A library of high performance preconditioners, Springer, Berlin, Heidelberg. [Google Scholar]
  • Amestoy P.R., Duff I.S., L’Excellent J.-Y., KosterJ. (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Mat. Anal. Appl. 23, 1, 15–41. [CrossRef] [MathSciNet] [Google Scholar]
  • Amestoy P.R., Guermouche A., Lexcellent J.-Y., Pralet S. (2006) Hybrid scheduling for the parallel solution of linear systems, Parallel Comput. 32, 2, 136–156. [Google Scholar]
  • Li Y., Liao Y., Zhao J., Peng Y., Pu X. (2017) Simulation and analysis of wormhole formation in carbonate rocks considering heat transmission process, J. Nat. Gas Sci. Eng. 42, 120–132. [Google Scholar]
  • Kalia N., Glasbergen G. (2010) Fluid temperature as a design parameter in carbonate matrix acidizing, in: SPE Production and Operations Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Fredd C.N., Fogler H.S. (1999) Optimum conditions for wormhole formation in carbonate porous media: Influence of transport and reaction, SPE J. 4, 3, 196–205. [CrossRef] [Google Scholar]
  • Wang Y., Sun S. (2016) Direct calculation of permeability by high-accurate finite difference and numerical integration methods, Commun. Comput. Phys. 20, 2, 405–440. [Google Scholar]
  • Wang Y. (2019) Reynolds stress model for viscoelastic drag-reducing flow induced by polymer solution, Polymers 11, 10, 1659. [Google Scholar]
  • Whitaker S. (1996) The Forchheimer equation: A theoretical development, Transp. Porous Media 25, 1, 27–61. [Google Scholar]
  • Aavatsmark I. (2002) An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci. 6, 3, 405–432. [Google Scholar]
  • Šekutkovski B., Kostić I., Stefanović Z., Simonović A., Kostić O. (2015) A hybrid RANS-LES method with compressible k-omegaSSTSAS turbulence model for high Reynolds number flow applications/Hibridna RANS-LES metoda s kompresibilnim k-omegaSSTSAS turbulentnim modelom namjenjena analizi strujanja pri velikim Reynoldsovim brojevima, Tehnicki Vjesnik-Technical Gazette 22, 5, 1237–1246. [Google Scholar]
  • Sun S., Salama A., El-Amin M.F. (2012) An equation-type approach for the numerical solution of the partial differential equations governing transport phenomena in porous media, in: The International Conference on Computational Science, ICCS, June 4–6, Omaha, NE. [Google Scholar]
  • Salama A., Sun S., El Amin M.F. (2013) A multi-point flux approximation of the steady state heat conduction equation in anisotropic media, ASME J. Heat Trans. 135, 1–6. [CrossRef] [Google Scholar]
  • Salama A., Li W., Sun S. (2013) Finite volume approximation of the three- dimensional flow equation in axisymmetric, heterogeneous porous media based on local analytical solution, J. Hydrol. 501, 45–55. [CrossRef] [Google Scholar]
  • Salama A., Sun S., Wheeler M. (2014) Solving global problem by considering multitude of local problems: Application to flow in anisotropic porous media using the multipoint flux approximation, J. Comput. Appl. Math. 267, 117–130. [Google Scholar]
  • Salama A., Sun S., El Amin M.F. (2015) Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation, Ann. Nucl. Energy 76, 100–112. [Google Scholar]
  • Davis T.A. (2004) Algorithm 832: UMFPACK V4. 3 – an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. 30, 196–199. [Google Scholar]
  • Hadri B., Kortas S., Feki S., Khurram R., Newby G. (2015) Overview of the KAUST’s Cray X40 system–Shaheen II, in: Proceedings of the 2015 Cray User Group. [Google Scholar]
  • Ku H.C., Hirsh R.S., Taylor T.D. (1987) A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations, J. Comput. Phys. 70, 2, 439–462. [Google Scholar]
  • Kalia N., Balakotaiah V. (2009) Effect of medium heterogeneities on reactive dissolution of carbonates, Chem. Eng. Sci. 64, 2, 376–390. [Google Scholar]
  • Raju M.P. (2009) Parallel computation of finite element Navier-Stokes codes using MUMPS solver, Int. J. Comput. Sci. Issu. 4, 2, 20–24. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.