Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 74
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2020071
Published online 20 October 2020
  • Grand View Research (2019) Refinery Catalysts Market Size, Share & Trends Analysis Report By Material (Zeolites, Chemical Compounds), By Application (FCC, Hydrocracking, Catalytic Hydrotreating), By Region, And Segment Forecasts, 2019–2025, 172 p. [Google Scholar]
  • IEA (2018) The Future of Petrochemicals, International Energy Agency. [Google Scholar]
  • Hakeem A. (2019) High Throughput catalyst testing to enhance refinery operations, in: SPE Kuwait Oil & Gas Show and Conference, Society of Petroleum Engineers, 8 p. [Google Scholar]
  • Wehinger G.D., Kreitz B., Nagy A.J., Turek T. (2020) Characterization of a modular Temkin reactor with experiments and computational fluid dynamics simulations, Chem. Eng. J. 389, 124342. doi: 10.1016/j.cej.2020.124342 [Google Scholar]
  • Figueiredo J.L. (1982) Progress in catalyst deactivation, Springer, Dordrecht. [CrossRef] [Google Scholar]
  • Mederos F.S., Ancheyta J., Chen J. (2009) Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A Gen. 355, 1–19. [Google Scholar]
  • Sie S.T. (1996) Miniaturization of hydroprocessing catalyst testing systems: Theory and practice, AIChE J. 42, 12, 3498–3507. [Google Scholar]
  • Mears D.E. (1971) The role of axial dispersion in trickle-flow laboratory reactors, Chem. Eng. Sc. 26, 1361–1366. [CrossRef] [Google Scholar]
  • Gierman H. (1988) Design of laboratory hydrotreating reactors: Scaling down of trickle-flow reactors, Appl. Catal. 43, 277–286. [Google Scholar]
  • Thiele E.W. (1939) Relation between catalytic activity and size of particle, Ind. Eng. Chem. Res. 31, 916–920. [Google Scholar]
  • Mears D.E. (1971) Tests for transport limitations in experimental catalytic reactors, Ind. Eng. Chem. Process. Des. Dev. 10, 4, 541–547. [CrossRef] [Google Scholar]
  • Rolland M., Fonte C. (2015) Incertitude induced by testing a small number of catalytic pellets in fixed beds, Chem. Eng. Sci. 138, 698–705. [Google Scholar]
  • Raynal L., Augier F., Bazer-Bachi F., Haroun Y., Pereira da Fonte C. (2016) CFD applied to process development in the oil and gas industry – a review, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 42. [CrossRef] [Google Scholar]
  • Dixon A.G., Nijemeisland M. (2001) CFD as a design tool for fixed-bed reactors, Ind. Eng. Chem. Res 40, 23, 5246–5254. [Google Scholar]
  • Dorai F., Teixeira C.M., Rolland M., Climent E., Marcoux M., Wachs A. (2015) Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribution, Chem. Eng. Sci. 129, 180–192. [Google Scholar]
  • Berger R.J., Perez-Ramirez J., Kapteijn F., Moulijn J.A. (2002) Catalyst performance testing. Radial and axial dispersion related to dilution in fixed-bed laboratory reactors, Appl. Catal. A Gen. 227, 321–333. [Google Scholar]
  • Berger R.J., Perez-Ramirez J., Kapteijn F., Moulijn J.A. (2002) Catalyst performance testing: the influence of catalyst bed dilution on the conversion observed, Chem. Eng. J. 90, 173–183. [Google Scholar]
  • Berger R.J., Perez-Ramirez J., Kapteijn F., Moulijn J.A. (2002) Catalyst performance testing: bed dilution revisited, Chem. Eng. Sci. 57, 4921–4932. [Google Scholar]
  • Taniewski M., Lachowicz A., Skutil K., Czechowicz D. (1996) The effect of dilution of the catalyst bed on its heat-transfer characteristics in oxidative coupling of methane, Chem. Eng. Sci. 51, 18, 4271–4278. [Google Scholar]
  • Rolland M. (2014) Des limites à la reduction d’échelle en réacteur de test catalytique en lit fixe ? PhD thesis, Université Claude Bernard – Lyon I, Lyon, 214 p. [Google Scholar]
  • Khadilkar M.R., Wu Y.X., Al-Dahhan M.H., Duduković M.P., Colakyan M. (1996) Comparison of trickle-bed and upflow reactor performance at high pressure: Model predictions and experimental observations, Chem. Eng. Sci. 51, 10, 2139–2148. [Google Scholar]
  • Goto S., Levec J., Smith J.M. (1975) Mass transfer in packed beds with two-phase flow, Ind. Eng. Chem. Process. Des. Dev. 14, 4, 473–478. [CrossRef] [Google Scholar]
  • Saada N.Y. (1972) Assessment of interfacial area in co-current two-phase flow in packed beds, Chim. Ind. Génie chimique 105, 1415. [Google Scholar]
  • Larachi F., Belfares L., Iliuta I., Grandjean B.P.A. (2003) Heat and mass transfer in cocurrent gas-liquid packed beds. Analysis, recommendations and new correlations, Ind. Eng. Chem. Res. 42, 222–242. [Google Scholar]
  • Belfares L., Cassanello M.C., Grandjean B.P.A., Larachi F. (2001) Liquid back-mixing in packed-bubble column reactors: a state-of-the-art correlation, Catal. Today 64, 321–332. [Google Scholar]
  • Bensetiti Z., Larachi F., Grandjean B.P.A. (1997) Liquid saturation in cocurrent upflow fixed-bed reactors: a state-of-the-art correlation, Chem. Eng. Sci. 52, 4239–4247. [Google Scholar]
  • Poling B.E., Prausnitz J.M., O’Connell J.P. (2000) The properties of Gases and Liquids, 5th edn., McGraw-Hill Professional. [Google Scholar]
  • Toppinen S., Salmi T., Rantakylae T.K., Aittamaa J. (1996) Kinetics of the Liquid-Phase Hydrogenation of Benzene and Some Monosubstituted Alkylbenzenes over a Nickel Catalyst, Ind. Eng. Chem. Res. 35, 1824–1833. [Google Scholar]
  • Ranz W.E., Marshall W.R. (1952) Evaporation from Drops, Chem. Eng. Prog. 48, 141–146, 173–180. [Google Scholar]
  • Moulijn J.A., Makkee M., Berger R.J. (2016) Catalyst testing in multiphase micro-packed-bed reactors; criterion for radial mass transport, Catal. Today 259, 354–359. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.