Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 70
Number of page(s) 12
Published online 13 October 2020
  • Fraga C.T.C., Pinto A.C.C., Branco C.C.M., Pizarro J.O.S., Paulo C.A.S. (2015) Brazilian pre-salt: An impressive journey from plans and challenges to concrete results, in: Offshore Technology Conference, 4–7 May, Houston, Texas. [Google Scholar]
  • Huc A.Y. (2004) Petroleum in the South Atlantic, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 59, 3, 243–253. [CrossRef] [Google Scholar]
  • Kalaydjian F., Bourbiaux B. (2002) Integrated reservoir management: A powerful method to add value to companies’ assets. A modern view of the EOR techniques, Oil Gas Sci. Technol - Rev. IFP Energies nouvelles 57, 3, 251–258. [CrossRef] [Google Scholar]
  • Hegstad B.K., Saetrom J. (2014) Using multiple realizations from an integrated uncertainty analysis to make more robust decisions in field development, in: Abu Dhabi International Petroleum Exhibition and Conference, 10–13 November, Abu Dhabi, UAE. [Google Scholar]
  • Rahmawati S.D., Whitson C.H., Foss B., Kuntadi A. (2012) Integrated field operation and optimization, J. Pet. Sci. Eng. 81, 161–170. [Google Scholar]
  • Kosmala A., Aanonsen S.I., Gajraj A., Biran V., Brusdal K., Stokkenes A., Torrens R. (2003) Coupling of a surface network with reservoir simulation, SPE Annual Technical Conference and Exhibition, 5–8 October, Denver, Colorado. [Google Scholar]
  • Rotondi M., Cominelli A., Di Giorgio C., Rossi R., Vignati E., Carati B. (2008) The benefits of integrated asset modelling: Lessons learned from field cases, in: Europec/EAGE Conference and Exhibition, 9–12 June, Rome, Italy. [Google Scholar]
  • Hiebert A.D., Khoshkbarchi M., Sammon P.H., Alves I.N., Rodrigues J., Belien A.J., Valvatne P.H. (2011) An advanced framework for simulating connected reservoirs, wells and production facilities, in: SPE Reservoir Simulation Symposium, 21–23 February, The Woodlands, Texas. [Google Scholar]
  • Gaspar A.T.F.S., Barreto C.E.A.G., Schiozer D.J. (2016) Assisted process for design optimization of oil exploitation strategy, J. Pet. Sci. Eng. 146, 473–488. [Google Scholar]
  • Santos D.R., Schiozer D.J. (2016) Impacto das Variáveis de Controle no Processo de Seleção da Estratégia de Produção sob Incertezas Durante a Fase de Desenvolvimento de Campos de Petróleo, in: Rio Oil & Gas Expo and Conference, 24–27 October, Rio de Janeiro, Brazil. [Google Scholar]
  • Pinto M.A.S., Gildin E., Schiozer D.J. (2015) Short-term and long-term optimizations for reservoir management with intelligent wells, Society of Petroleum Engineers. [Google Scholar]
  • Azamipour V., Assareh M., Dehghani M.R., Mittermeir G.M. (2017) An efficient workflow for production allocation during water flooding, ASME J. Energy Resour. Technol. 139, 3, 032902. [CrossRef] [Google Scholar]
  • Yue W., Yilin Wang J. (2015) Feasibility of waterflooding for a carbonate oil field through whole-field simulation studies, ASME J. Energy Resour. Technol. 137, 6, 064501. [CrossRef] [Google Scholar]
  • Bento D.F., Schiozer D.J. (2010) The influence of the production lines pressure drop in the definition of the oilfield drainage strategy, in: SPE Latin American and Caribbean Petroleum Engineering Conference, 1–3 December, Lima, Peru. [Google Scholar]
  • Cotrim H.A., von Hohendorff Filho J.C., Schiozer D.J. (2011) Production optimization considering interaction between reservoirs and constrained surface facilities, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition, 9–11 October, Abu Dhabi, UAE. [Google Scholar]
  • Gramorelli F., Hohendorff Filho J.C.V., Schiozer D.J. (2018) Gerenciamento Integrado de Múltiplos Reservatórios Sujeitos a Restrições Operacionais e de Escoamento, in: Rio Oil & Gas Conference, September 24–27, Rio de Janeiro, Brazil. [Google Scholar]
  • von Hohendorff Filho J.C., Schiozer D.J. (2018) Effect of reservoir and production system integration on field production strategy selection, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 44. [CrossRef] [Google Scholar]
  • Gaspar A.T.F.S., Avansi G.D., Santos A.A.S., Hohendorff Filho J.C.V., Schiozer D.J. (2015) UNISIM-I-D: Benchmark studies for oil field development and production strategy selection, Int. J. Model. Simul. Petrol. Ind. 9, 47–55. [Google Scholar]
  • Avansi G.D., Schiozer D.J. (2015) UNISIM-I: Synthetic model for reservoir development and management applications, Int. J. Model. Simul. Petrol. Ind. 9, 1, 21–30. [Google Scholar]
  • Correia M., Hohendorff J., Gaspar A.T.F.S., Schiozer D. (2015) UNISIM-II-D: Benchmark case proposal based on a carbonate reservoir, Society of Petroleum Engineers. [Google Scholar]
  • Victorino I.R.S., Hohendorff Filho J.C.V., Schiozer D.J. (2016) Sensibility analysis of production system parameters for integrated simulation of reservoir and production systems, in: Rio Oil & Gas Conference, 24–27 October, Rio de Janeiro, Brazil. [Google Scholar]
  • Schiozer D.J., Santos A.A.S., Drumond P.S. (2015) Integrated model based decision analysis in twelve steps applied to petroleum fields development and management, in: EUROPEC 2015, 1–4 June, Madrid, Spain. [Google Scholar]
  • Standing M.B. (1947, January 1) A pressure-volume-temperature correlation for mixtures of California oils and gases, American Petroleum Institute. [Google Scholar]
  • Brill J.P., Beggs H.D. (1991) Two-phase flow in pipes, 6th edn., Third Printing. University of Tulsa, Tulsa, Oklahoma. [Google Scholar]
  • Siavashi M., Yazdani M. (2018) A comparative study of genetic and particle swarm optimization algorithms and their hybrid method in water flooding optimization, ASME J. Energy Resour. Technol. 140, 10, 102903. [CrossRef] [Google Scholar]
  • Campozana F.P., Dos Santos R.L., Madeira M.G., Sousa S.H.G., Spinola M. (2008) Optimization of surface network and platform location using a next generation reservoir simulator coupled with an integrated asset optimizer – an application to an offshore deep water oil field in Brazil, International Petroleum Technology Conference, 3–5 December, Kuala Lumpur, Malaysia. [Google Scholar]
  • Sukarno P., Saepudin D., Dewi S., Soewono E., Sidarto K.A., Gunawan A.Y. (2009) Optimization of gas injection allocation in a dual gas lift well system, ASME J. Energy Resour. Technol. 131, 3, 033101. [CrossRef] [Google Scholar]
  • Abellan A., Noetinger B. (2010) Optimizing subsurface field data acquisition using information theory, Math. Geosci. 42, 6, 603–630. [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2011) Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models, Comput. Geosci. 16, 1, 75–92. [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2013) Partially separated metamodels with evolution strategies for well-placement optimization, SPE J. 18, 6, 1003–1011. [CrossRef] [Google Scholar]
  • von Hohendorff Filho J.C., Maschio C., Schiozer D.J. (2016) Production strategy optimization based on iterative discrete Latin hypercube, J. Braz. Soc. Mech. Sci. Eng. 38, 2473–2480. [CrossRef] [Google Scholar]
  • von Hohendorff Filho J.C., Schiozer D.J. (2018) Correcting inflow performance relationship curves for explicitly coupling reservoir simulations and production systems simulations, ASME J. Energy Resour. Technol. 140, 3, 032006. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.