Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Numéro d'article 70
Nombre de pages 12
DOI https://doi.org/10.2516/ogst/2020064
Publié en ligne 13 octobre 2020
  • Fraga C.T.C., Pinto A.C.C., Branco C.C.M., Pizarro J.O.S., Paulo C.A.S. (2015) Brazilian pre-salt: An impressive journey from plans and challenges to concrete results, in: Offshore Technology Conference, 4–7 May, Houston, Texas. https://doi.org/10.4043/25710-MS. [Google Scholar]
  • Huc A.Y. (2004) Petroleum in the South Atlantic, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 59, 3, 243–253. https://doi.org/10.2516/ogst:2004017. [CrossRef] [Google Scholar]
  • Kalaydjian F., Bourbiaux B. (2002) Integrated reservoir management: A powerful method to add value to companies’ assets. A modern view of the EOR techniques, Oil Gas Sci. Technol - Rev. IFP Energies nouvelles 57, 3, 251–258. https://doi.org/10.2516/ogst:2002017. [CrossRef] [Google Scholar]
  • Hegstad B.K., Saetrom J. (2014) Using multiple realizations from an integrated uncertainty analysis to make more robust decisions in field development, in: Abu Dhabi International Petroleum Exhibition and Conference, 10–13 November, Abu Dhabi, UAE. https://doi.org/10.2118/171831-ms. [Google Scholar]
  • Rahmawati S.D., Whitson C.H., Foss B., Kuntadi A. (2012) Integrated field operation and optimization, J. Pet. Sci. Eng. 81, 161–170. https://doi.org/10.1016/j.petrol.2011.12.027. [Google Scholar]
  • Kosmala A., Aanonsen S.I., Gajraj A., Biran V., Brusdal K., Stokkenes A., Torrens R. (2003) Coupling of a surface network with reservoir simulation, SPE Annual Technical Conference and Exhibition, 5–8 October, Denver, Colorado. https://doi.org/10.2118/84220-ms. [Google Scholar]
  • Rotondi M., Cominelli A., Di Giorgio C., Rossi R., Vignati E., Carati B. (2008) The benefits of integrated asset modelling: Lessons learned from field cases, in: Europec/EAGE Conference and Exhibition, 9–12 June, Rome, Italy. https://doi.org/10.2118/113831-ms. [Google Scholar]
  • Hiebert A.D., Khoshkbarchi M., Sammon P.H., Alves I.N., Rodrigues J., Belien A.J., Valvatne P.H. (2011) An advanced framework for simulating connected reservoirs, wells and production facilities, in: SPE Reservoir Simulation Symposium, 21–23 February, The Woodlands, Texas. https://doi.org/10.2118/141012-ms. [Google Scholar]
  • Gaspar A.T.F.S., Barreto C.E.A.G., Schiozer D.J. (2016) Assisted process for design optimization of oil exploitation strategy, J. Pet. Sci. Eng. 146, 473–488. https://doi.org/10.1016/j.petrol.2016.05.042. [Google Scholar]
  • Santos D.R., Schiozer D.J. (2016) Impacto das Variáveis de Controle no Processo de Seleção da Estratégia de Produção sob Incertezas Durante a Fase de Desenvolvimento de Campos de Petróleo, in: Rio Oil & Gas Expo and Conference, 24–27 October, Rio de Janeiro, Brazil. [Google Scholar]
  • Pinto M.A.S., Gildin E., Schiozer D.J. (2015) Short-term and long-term optimizations for reservoir management with intelligent wells, Society of Petroleum Engineers. https://doi.org/10.2118/177255-MS. [Google Scholar]
  • Azamipour V., Assareh M., Dehghani M.R., Mittermeir G.M. (2017) An efficient workflow for production allocation during water flooding, ASME J. Energy Resour. Technol. 139, 3, 032902. https://doi.org/10.1115/1.4034808. [CrossRef] [Google Scholar]
  • Yue W., Yilin Wang J. (2015) Feasibility of waterflooding for a carbonate oil field through whole-field simulation studies, ASME J. Energy Resour. Technol. 137, 6, 064501. https://doi.org/10.1115/1.4030401. [CrossRef] [Google Scholar]
  • Bento D.F., Schiozer D.J. (2010) The influence of the production lines pressure drop in the definition of the oilfield drainage strategy, in: SPE Latin American and Caribbean Petroleum Engineering Conference, 1–3 December, Lima, Peru. https://doi.org/10.2118/138259-ms. [Google Scholar]
  • Cotrim H.A., von Hohendorff Filho J.C., Schiozer D.J. (2011) Production optimization considering interaction between reservoirs and constrained surface facilities, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition, 9–11 October, Abu Dhabi, UAE. https://doi.org/10.2118/148334-ms. [Google Scholar]
  • Gramorelli F., Hohendorff Filho J.C.V., Schiozer D.J. (2018) Gerenciamento Integrado de Múltiplos Reservatórios Sujeitos a Restrições Operacionais e de Escoamento, in: Rio Oil & Gas Conference, September 24–27, Rio de Janeiro, Brazil. [Google Scholar]
  • von Hohendorff Filho J.C., Schiozer D.J. (2018) Effect of reservoir and production system integration on field production strategy selection, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 44. https://doi.org/10.2516/ogst/2018042. [CrossRef] [Google Scholar]
  • Gaspar A.T.F.S., Avansi G.D., Santos A.A.S., Hohendorff Filho J.C.V., Schiozer D.J. (2015) UNISIM-I-D: Benchmark studies for oil field development and production strategy selection, Int. J. Model. Simul. Petrol. Ind. 9, 47–55. [Google Scholar]
  • Avansi G.D., Schiozer D.J. (2015) UNISIM-I: Synthetic model for reservoir development and management applications, Int. J. Model. Simul. Petrol. Ind. 9, 1, 21–30. [Google Scholar]
  • Correia M., Hohendorff J., Gaspar A.T.F.S., Schiozer D. (2015) UNISIM-II-D: Benchmark case proposal based on a carbonate reservoir, Society of Petroleum Engineers. https://doi.org/10.2118/177140-MS. [Google Scholar]
  • Victorino I.R.S., Hohendorff Filho J.C.V., Schiozer D.J. (2016) Sensibility analysis of production system parameters for integrated simulation of reservoir and production systems, in: Rio Oil & Gas Conference, 24–27 October, Rio de Janeiro, Brazil. [Google Scholar]
  • Schiozer D.J., Santos A.A.S., Drumond P.S. (2015) Integrated model based decision analysis in twelve steps applied to petroleum fields development and management, in: EUROPEC 2015, 1–4 June, Madrid, Spain. https://doi.org/10.2118/174370-ms. [Google Scholar]
  • Standing M.B. (1947, January 1) A pressure-volume-temperature correlation for mixtures of California oils and gases, American Petroleum Institute. [Google Scholar]
  • Brill J.P., Beggs H.D. (1991) Two-phase flow in pipes, 6th edn., Third Printing. University of Tulsa, Tulsa, Oklahoma. [Google Scholar]
  • Siavashi M., Yazdani M. (2018) A comparative study of genetic and particle swarm optimization algorithms and their hybrid method in water flooding optimization, ASME J. Energy Resour. Technol. 140, 10, 102903. https://doi.org/10.1115/1.4040059. [CrossRef] [Google Scholar]
  • Campozana F.P., Dos Santos R.L., Madeira M.G., Sousa S.H.G., Spinola M. (2008) Optimization of surface network and platform location using a next generation reservoir simulator coupled with an integrated asset optimizer – an application to an offshore deep water oil field in Brazil, International Petroleum Technology Conference, 3–5 December, Kuala Lumpur, Malaysia. https://doi.org/10.2523/iptc-12500-ms. [Google Scholar]
  • Sukarno P., Saepudin D., Dewi S., Soewono E., Sidarto K.A., Gunawan A.Y. (2009) Optimization of gas injection allocation in a dual gas lift well system, ASME J. Energy Resour. Technol. 131, 3, 033101. https://doi.org/10.1115/1.3185345. [CrossRef] [Google Scholar]
  • Abellan A., Noetinger B. (2010) Optimizing subsurface field data acquisition using information theory, Math. Geosci. 42, 6, 603–630. https://doi.org/10.1007/s11004-010-9285-6. [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2011) Well placement optimization with the covariance matrix adaptation evolution strategy and meta-models, Comput. Geosci. 16, 1, 75–92. https://doi.org/10.1007/s10596-011-9254-2. [Google Scholar]
  • Bouzarkouna Z., Ding D.Y., Auger A. (2013) Partially separated metamodels with evolution strategies for well-placement optimization, SPE J. 18, 6, 1003–1011. https://doi.org/10.2118/143292-pa. [CrossRef] [Google Scholar]
  • von Hohendorff Filho J.C., Maschio C., Schiozer D.J. (2016) Production strategy optimization based on iterative discrete Latin hypercube, J. Braz. Soc. Mech. Sci. Eng. 38, 2473–2480. https://doi.org/10.1007/s40430-016-0511-0. [CrossRef] [Google Scholar]
  • von Hohendorff Filho J.C., Schiozer D.J. (2018) Correcting inflow performance relationship curves for explicitly coupling reservoir simulations and production systems simulations, ASME J. Energy Resour. Technol. 140, 3, 032006. https://doi.org/10.1115/1.4038045. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.