Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 65
Number of page(s) 18
DOI https://doi.org/10.2516/ogst/2020060
Published online 30 September 2020
  • Al-Muntasheri G.A., Hussein I.A., Nasr-El-Din H.A., Amin M.B. (2007) Viscoelastic properties of a high temperature cross-linked water shut-off polymeric gel, J. Petrol. Sci. Eng. 55, 1–2, 56–66. doi: 10.1016/j.petrol.2006.04.004. [CrossRef] [Google Scholar]
  • Al-Muntasheri G.A., Nasr-El-Din H.A., Al-Noaimi K., Zitha P.L.J. (2009) A study of polyacrylamide-based gels crosslinked with polyethyleneimine, SPE J. 14, 02, 245–251. [CrossRef] [Google Scholar]
  • Al-Muntasheri G.A., Nasr-El-Din H.A., Zitha P.L.J. (2008) Gelation kinetics and performance evaluation of an organically crosslinked gel at high temperature and pressure, SPE J. 13, 03, 337–345. doi: 10.2118/104071-PA. [CrossRef] [Google Scholar]
  • Al-Muntasheri G.A., Zitha P.L.J., Nasr-El-Din H.A. (2010) A new organic gel system for water control: a computed tomography study, SPE J. 15, 01, 197–207. [CrossRef] [Google Scholar]
  • Al-Muntasheri G., Zitha P. (2009) Gel under dynamic stress in porous media: new insights using computed tomography, in: Proceedings of SPE Saudi Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia, 9–11 May. doi: 10.2118/126068-MS. [Google Scholar]
  • Allison J.D., Purkaple J.D. (1988) Reducing permeability of highly permeable zones in underground formations, Google patent number: US4773482A. URL: https://patents.google.com/patent/US4773482A/en. [Google Scholar]
  • Amir Z., Said I.M., Jan B.M. (2019) In situ organically cross-linked polymer gel for high-temperature reservoir conformance control: A review, Polym. Adv. Technol. 30, 1, 13–39. [Google Scholar]
  • Bai Y., Xiong C., Wei F., Li J., Shu Y., Liu D. (2015a) Gelation study on a hydrophobically associating polymer/polyethylenimine gel system for water shut-off treatment, Energy Fuels 29, 2, 447–458. doi: 10.1021/ef502505k. [Google Scholar]
  • Bai B., Zhou J., Yin M. (2015b) A comprehensive review of polyacrylamide polymer gels for conformance control, Petrol. Explor. Dev. 42, 4, 525–532. [CrossRef] [Google Scholar]
  • Bailey B., Crabtree M., Tyrie J., Elphick J., Kuchuk F., Romano C., Roodhart L. (2000) Water control, Oilfield Rev. 12, 1, 30–51. [Google Scholar]
  • Bryant S.L., Rabaioli M.R., Lockhart T.P. (1996) Influence of syneresis on permeability reduction by polymer gels, SPE Prod. Facil. 11, 04, 209–215. [CrossRef] [Google Scholar]
  • Cao W., Xie K., Lu X., Liu Y., Zhang Y. (2019) Effect of profile-control oil-displacement agent on increasing oil recovery and its mechanism, Fuel 237, 1151–1160. doi: 10.1016/j.fuel.2018.10.089. [CrossRef] [Google Scholar]
  • Chiappa L., Lockhart T.P., Mennella A., Burrafato G. (2000) Water production control with relative permeability modifiers, in: 16th World Petroleum Congress, World Petroleum Congress, Calgary, Canada, p. 3. [Google Scholar]
  • El-Karsani K.S.M., Al-Muntasheri G.A., Hussein I.A. (2014) Polymer systems for water shutoff and profile modification: a review over the last decade, SPE J. 19, 01, 135–149. [CrossRef] [Google Scholar]
  • El-Karsani K.S.M., Al-Muntasheri G.A., Sultan A.S., Hussein I.A. (2015) Performance of PAM/PEI gel system for water shut-off in high temperature reservoirs: Laboratory study, J. Appl. Polym. Sci. 132, 41869. doi: 10.1002/app.41869. [Google Scholar]
  • Gakhar K., Lane R.H. (2012) Low extrusion pressure polymer gel for water shutoff in narrow aperture fractures in tight and shale gas and oil reservoirs, in: SPE International Symposium and Exhibition on Formation Damage Control, 15–17 February, Lafayette, Louisiana, USA, Society of Petroleum Engineers. [Google Scholar]
  • Ganguly S., Willhite G.P., Green D.W., McCool C.S. (2003) Effect of flow rate on disproportionate permeability reduction, in: International Symposium on Oilfield Chemistry, 5–7 February, Houston, Texas, USA, Society of Petroleum Engineers. [Google Scholar]
  • Gussenov I., Nuraje N., Kudaibergenov S. (2019) Bulk gels for permeability reduction in fractured and matrix reservoirs, Energy Rep. 5, 733–746. doi: 10.1016/j.egyr.2019.06.012. [CrossRef] [Google Scholar]
  • Hasankhani G.M., Madani M., Esmaeilzadeh F., Mowla D. (2019) Experimental investigation of asphaltene-augmented gel polymer performance for water shut-off and enhancing oil recovery in fractured oil reservoirs, J. Mol. Liq. 275, 654–666. [Google Scholar]
  • Hasankhani G.M., Madani M., Esmaeilzadeh F., Mowla D., Daryasafar A. (2018) An experimental investigation of polyacrylamide and sulfonated polyacrylamides based gels crosslinked with cr (III)-acetate for water shutoff in fractured oil reservoirs, J. Dispers. Sci. Technol. 39, 12, 1780–1789. [Google Scholar]
  • Heidari S., Esmaeilzadeh F., Mowla D., Ghasemi S. (2018) Optimization of swelling percentage of poly (AAm-co-AA) in BaCl2 salt solution using response surface methodology (RSM), Phys. Chem. Res. 6, 1, 159–172. [Google Scholar]
  • Imqam A., Bai B. (2015) Optimizing the strength and size of preformed particle gels for better conformance control treatment, Fuel 148, 178–185. doi: 10.1016/j.fuel.2015.01.022. [CrossRef] [Google Scholar]
  • Jia H., Pu W.-F., Zhao J.-Z., Jin F.-Y. (2010) Research on the gelation performance of low toxic PEI cross-linking PHPAM gel systems as water shutoff agents in low temperature reservoirs, Ind. Eng. Chem. Res. 49, 20, 9618–9624. [CrossRef] [Google Scholar]
  • Jia H., Zhao J.-Z., Jin F.-Y., Pu W.-F., Li Y.-M., Li K.-X., Li J.-M. (2012) New insights into the gelation behavior of polyethyleneimine cross-linking partially hydrolyzed polyacrylamide gels, Ind. Eng. Chem. Res. 51, 38, 12155–12166. [CrossRef] [Google Scholar]
  • Karimi S., Esmaeilzadeh F., Mowla D. (2014) Identification and selection of a stable gel polymer to control or reduce water production in gas condensate fields, J. Nat. Gas Sci. Eng. 21, 940–950. [CrossRef] [Google Scholar]
  • Karimi S., Kazemi S., Kazemi N. (2016) Syneresis measurement of the HPAM-Cr (III) gel polymer at different conditions: An experimental investigation, J. Nat. Gas Sci. Eng. 34, 1027–1033. [CrossRef] [Google Scholar]
  • Lashari Z.A., Yang H., Zhu Z., Tang X., Cao C., Iqbal M.W., Kang W. (2018) Experimental research of high strength thermally stable organic composite polymer gel, J. Mol. Liq. 263, 118–124. doi: 10.1016/j.molliq.2018.04.146. [Google Scholar]
  • Lee J.H., Lee K.S. (2013) Performance of gel treatments in reservoirs with multiscale heterogeneity, J. Chem. 2013, 416328. [Google Scholar]
  • Liu Y., Dai C., Wang K., Zhao M., Gao M., Yang Z., Fang J., Wu Y. (2016) Investigation on preparation and profile control mechanisms of the dispersed particle gels (DPG) formed from phenol-formaldehyde cross-linked polymer gel, Ind. Eng. Chem. Res. 55, 22, 6284–6292. doi: 10.1021/acs.iecr.6b00055. [CrossRef] [Google Scholar]
  • Mees F., Swennen R., Geet M.Van, Jacobs P. (2003) Applications of X-ray computed tomography in the geosciences, Geol. Soc. London Spec. Publ. 215, 1, 1–6. doi: 10.1144/GSL.SP.2003.215.01.01. [CrossRef] [Google Scholar]
  • Nguyen N.T.B., Tu T.N., Bae W., Dang C.T.Q., Chung T., Nguyen H.X. (2012) Gelation time optimization for an HPAM/chromium acetate system: The successful key of conformance control technology, Energ Source Part A 34, 14, 1305–1317. [CrossRef] [Google Scholar]
  • Qajar J., Arns C.H. (2016) Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis – part 1: Assessment of pore-scale mineral dissolution and deposition, J. Contam. Hydrol. 192, 60–86. doi: 10.1016/j.jconhyd.2016.06.005. [CrossRef] [PubMed] [Google Scholar]
  • Reddy B.R., Eoff L., Dalrymple E.D., Black K., Brown D., Rietjens M. (2003) A natural polymer-based cross-linker system for conformance gel systems, SPE J. 8, 02, 99–106. [CrossRef] [Google Scholar]
  • Reynolds R., Kiker R. (2003) Produced water and associated issues, Oklahoma Geological Survey, Report number: 6-2003. https://digitalprairie.ok.gov/digital/collection/stgovpub/id/2547. [Google Scholar]
  • Seright R.S. (1992) Impact of permeability and lithology on gel performance, in: SPE/DOE Enhanced Oil Recovery Symposium, 22–24 April, Tulsa, Oklahoma, USA, Society of Petroleum Engineers. [Google Scholar]
  • Seright R.S. (1995) Reduction of gas and water permeabilities using gels, SPE Prod. Facil. 10, 02, 103–108. [CrossRef] [Google Scholar]
  • Seright R.S., Lane R.H., Sydansk R.D. (2003) A strategy for attacking excess water production, SPE Prod. Facil. 18, 03, 158–169. doi: 10.2118/84966-PA. [CrossRef] [Google Scholar]
  • Seright R.S., Martin F.D. (1993) Impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel, SPE Res. Eng. 8, 01, 43–50. [CrossRef] [Google Scholar]
  • Simjoo M., Vafaie Sefti M., Dadvand Koohi A., Hasheminasab R., Sajadian V. (2007) ‘Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the Iranian oil reservoirs conditions, Iran J. Chem. Chem. Eng. 26, 4, 99–108. [Google Scholar]
  • Sydansk R.D., Argabright P.A. (1987) Conformance improvement in a subterranean hydrocarbon-bearing formation using a polymer gel, Google patent number: US4683949A. URL: https://patents.google.com/patent/US4683949A/en. [Google Scholar]
  • Sydansk R.D., Seright R.S. (2006) When and where relative permeability modification water-shutoff treatments can be successfully applied, in: SPE/DOE Symposium on Improved Oil Recovery, 22–26 April, Tulsa, Oklahoma, USA, p. 15. doi: 10.2118/99371-MS. [Google Scholar]
  • Syed A., Pantin B., Durucan S., Korre A., Shi J.-Q. (2014) The use of polymer-gel solutions for remediation of potential CO2 leakage from storage reservoirs, Energy Procedia 63, 4638–4645. doi: 10.1016/j.egypro.2014.11.497. [CrossRef] [Google Scholar]
  • Wan K., Xu Q. (2014) Local porosity distribution of cement paste characterized by X-ray micro-tomography, Sci. China Technol. Sci. 57, 5, 953–961. doi: 10.1007/s11431-014-5513-5. [CrossRef] [Google Scholar]
  • Wellington S.L., Vinegar H.J. (1987) X-ray computerized tomography, J. Petrol. Technol. 39, 08, 885–898. doi: 10.2118/16983-PA. [CrossRef] [Google Scholar]
  • Zhu D., Hou J., Wei Q., Chen Y. (2019) Development of a high-temperature-resistant polymer-gel system for conformance control in Jidong oil field, SPE Reserv. Eval. Eng. 22, 01, 100–109. doi: 10.2118/186235-PA. [CrossRef] [Google Scholar]
  • Zhu D., Hou J., Wei Q., Wu X., Bai B. (2017) Terpolymer gel system formed by resorcinol hexamethylenetetramine for water management in extremely high-temperature reservoirs, Energy Fuels 31, 2, 1519–1528. [CrossRef] [Google Scholar]
  • Zitha P.L.J., Botermans C.W., Hoek J. vd, Vermolen F.J. (2002) Control of flow through porous media using polymer gels, J. Appl. Phys. 92, 2, 1143–1153. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.