Engine Combustion Network – France
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Engine Combustion Network – France
Article Number 59
Number of page(s) 15
DOI https://doi.org/10.2516/ogst/2020039
Published online 08 September 2020
  • Wensing M., Vogel T., Götz G. (2016) Transition of diesel spray to a supercritical state under engine conditions, Inter. J. Engine. Res. 17, 1, 108–119. doi: 10.1177/1468087415604281. [Google Scholar]
  • Poulter T.C., Ritchey C., Benz C.A. (1932) The effect of pression on the refractive index of refraction of paraffin oil and glycerine, Phys. Rev. 41, 3, 366. [Google Scholar]
  • Rosen J.S. (1947) The refractive indices of alcohol, water, and their mixtures at high pressures, J. Opt. Soc. Am. 37, 11, 932–938. [PubMed] [Google Scholar]
  • Waxler R.M., Weir C.E. (1963) Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water, J. Res. Natl. bur. Stand A Phy. Chem. 67/A, 163–171. doi: 10.6028/jres.067A.06. [Google Scholar]
  • Waxler R.M., Schamp H.W., Weir C.E. (1964) Effect of pressure and temperature upon the optical dispersion of benzene, carbon tetrachloride and water, J. Res. Natl. Bur. Stand. A 5, 489–498. [Google Scholar]
  • Stanley E.M. (1971) Refractive index of pure water for wavelength of 6328 and at high pressure and moderate temperature, J. Chem. Eng. Data 16, 4, 454–457. [Google Scholar]
  • Besserer G.J., Robinson D.B. (1973) Refractive indexes of ethane, carbon dioxide, and isobutane, J. Chem. Eng. Data 18, 2, 137–140. [Google Scholar]
  • Wang D.L., Yang K., Zhou Y. (2016) Measuring refractive index and volume under high pressure with optical tomography and light microscopy, Appl. Opt. 55, 9, 2435–2438. [PubMed] [Google Scholar]
  • Clifford T. (1999) Fundamentals of supercritical fluids, Oxford University Press, New York, USA. [Google Scholar]
  • Adam J.A. (2002) The mathematical physics of rainbows and glories, Phys. Rep. 356, 4, 229–365. [Google Scholar]
  • van de Hulst H.C. (1957) Light scattering by small particles, John Wiley & Sons Inc., New York. [Google Scholar]
  • Lorenz L. (1890) Lysbevaegelsen i og uden for en af plane lysbolger belyst kulge, Vidensk. Selk. Skr 6, 1–62. [Google Scholar]
  • Mie G. (1908) Beiträge zur Optik Trüber Medien, speziell Kolloidaler Metallösungen, Ann. der Phys 25, 377–452. [Google Scholar]
  • Debye P. (1909) Der Lichtdruck auf Kugeln von beliebigem Material, Ann. der Phys. 30, 57–136. [Google Scholar]
  • Saengkaew S., Charinpanitku T., Vanisri H., Tanthapanichakoon W., Mees L., Gouesbet G., Gréhan G. (2006) Rainbow refractrometry: On the validity domain of Airy’s and Nussenzveig’s theories, Opt. Commun. 259, 7–13. [Google Scholar]
  • Nussenzveig H.M. (1969) High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory, J. Math. Phys. 10, 125. [Google Scholar]
  • FMP Technology GmbH Fluid Measurement Projects (2011) Monodisperse droplet generator for industrial and university research applications. https://fmp-technology.com. [Google Scholar]
  • Marston P.L., Goosby S.G. (1985) Ultrasonically stimulated low-frequency oscillation and breakup of immiscible liquid drops: Photographs, Phys. Fluids 28, 1233–1242. [Google Scholar]
  • Roth N., Anders K., Frohn A. (1991) Refractive-index measurements for the correction of particle sizing methods, Appl. Opt. 30, 33, 4960–4965. [PubMed] [Google Scholar]
  • Roth N., Anders K., Frohn A. (1990) Simultaneous measurement of temperature and size of droplets in the micrometer rang, J. Laser App. 2, 1, 37–42. [Google Scholar]
  • Saengkaew S., Charinpanikul T., Laurent C., Biscos Y., Lavergne G., Gouesbet G., Gréhan G. (2010) Processing of individual rainbow signals, Exp. Fluids 48, 1, 111–119. [Google Scholar]
  • Van Beeck J.P.A.J., Giannoulis D., Zimmer L., Riethmuller M.L. (1999) Global rainbow thermometry for droplet-temperature measurement, Opt. Lett. 24, 23, 1696–1698. [PubMed] [Google Scholar]
  • Wang J.J., Gréhan G., Han Y.P., Saengkaew S., Gouesbet G. (2011) Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets, Exp. Fluids 51, 149–159. [Google Scholar]
  • Saengkaew S., Godard G., Blaisot B., Gréhan G. (2009) Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets, Exp. Fluids 47, 839–848. [Google Scholar]
  • Verdier A., Santiago J.M., Vandel A., Saengkaew S., Cabot G., Gréhan G., Renou B. (2017) Experimental study of local flame structures and fuel droplet properties of a spray jet flame, Proc. Combust. Inst. 36, 2595–2602. [Google Scholar]
  • Ouboukhlik M., Saengkaew S., Fournier-Salaun M.C., Estel L., Gréhan G. (2015) Local measurement of mass transfer in a reactive spray for CO2 capture, Can. J. Chem. Eng. 93, 419–426. [Google Scholar]
  • Saengkaew S., Godard G., Gréhan G. (2018) Global Rainbow Technique: Temperature evolution measurements of super-cold droplets, in: ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, July 22–26, 2018. [Google Scholar]
  • Edlén B. (1966) Equation for the refractive index of air, Metrologia 2, 2, 71–80. [Google Scholar]
  • Schiebener P., Straub J.M.H., Levelt Sengers J.M.H., Gallagher J.S. (1990) Refractive index of water and steam as function of wavelength, temperature and density, J. Phys. Chem. Ref. Data 19, 3, 677–717. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.