Engine Combustion Network – France
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Engine Combustion Network – France
Numéro d'article 59
Nombre de pages 15
DOI https://doi.org/10.2516/ogst/2020039
Publié en ligne 8 septembre 2020
  • Wensing M., Vogel T., Götz G. (2016) Transition of diesel spray to a supercritical state under engine conditions, Inter. J. Engine. Res. 17, 1, 108–119. doi: 10.1177/1468087415604281. [CrossRef] [Google Scholar]
  • Poulter T.C., Ritchey C., Benz C.A. (1932) The effect of pression on the refractive index of refraction of paraffin oil and glycerine, Phys. Rev. 41, 3, 366. [Google Scholar]
  • Rosen J.S. (1947) The refractive indices of alcohol, water, and their mixtures at high pressures, J. Opt. Soc. Am. 37, 11, 932–938. [CrossRef] [PubMed] [Google Scholar]
  • Waxler R.M., Weir C.E. (1963) Effect of pressure and temperature on the refractive indices of benzene, carbon tetrachloride, and water, J. Res. Natl. bur. Stand A Phy. Chem. 67/A, 163–171. doi: 10.6028/jres.067A.06. [CrossRef] [Google Scholar]
  • Waxler R.M., Schamp H.W., Weir C.E. (1964) Effect of pressure and temperature upon the optical dispersion of benzene, carbon tetrachloride and water, J. Res. Natl. Bur. Stand. A 5, 489–498. [CrossRef] [Google Scholar]
  • Stanley E.M. (1971) Refractive index of pure water for wavelength of 6328 and at high pressure and moderate temperature, J. Chem. Eng. Data 16, 4, 454–457. [Google Scholar]
  • Besserer G.J., Robinson D.B. (1973) Refractive indexes of ethane, carbon dioxide, and isobutane, J. Chem. Eng. Data 18, 2, 137–140. [Google Scholar]
  • Wang D.L., Yang K., Zhou Y. (2016) Measuring refractive index and volume under high pressure with optical tomography and light microscopy, Appl. Opt. 55, 9, 2435–2438. [CrossRef] [PubMed] [Google Scholar]
  • Clifford T. (1999) Fundamentals of supercritical fluids, Oxford University Press, New York, USA. [Google Scholar]
  • Adam J.A. (2002) The mathematical physics of rainbows and glories, Phys. Rep. 356, 4, 229–365. [Google Scholar]
  • van de Hulst H.C. (1957) Light scattering by small particles, John Wiley & Sons Inc., New York. [Google Scholar]
  • Lorenz L. (1890) Lysbevaegelsen i og uden for en af plane lysbolger belyst kulge, Vidensk. Selk. Skr 6, 1–62. [Google Scholar]
  • Mie G. (1908) Beiträge zur Optik Trüber Medien, speziell Kolloidaler Metallösungen, Ann. der Phys 25, 377–452. [CrossRef] [Google Scholar]
  • Debye P. (1909) Der Lichtdruck auf Kugeln von beliebigem Material, Ann. der Phys. 30, 57–136. [CrossRef] [Google Scholar]
  • Saengkaew S., Charinpanitku T., Vanisri H., Tanthapanichakoon W., Mees L., Gouesbet G., Gréhan G. (2006) Rainbow refractrometry: On the validity domain of Airy’s and Nussenzveig’s theories, Opt. Commun. 259, 7–13. [Google Scholar]
  • Nussenzveig H.M. (1969) High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory, J. Math. Phys. 10, 125. [Google Scholar]
  • FMP Technology GmbH Fluid Measurement Projects (2011) Monodisperse droplet generator for industrial and university research applications. https://fmp-technology.com. [Google Scholar]
  • Marston P.L., Goosby S.G. (1985) Ultrasonically stimulated low-frequency oscillation and breakup of immiscible liquid drops: Photographs, Phys. Fluids 28, 1233–1242. [CrossRef] [Google Scholar]
  • Roth N., Anders K., Frohn A. (1991) Refractive-index measurements for the correction of particle sizing methods, Appl. Opt. 30, 33, 4960–4965. [CrossRef] [PubMed] [Google Scholar]
  • Roth N., Anders K., Frohn A. (1990) Simultaneous measurement of temperature and size of droplets in the micrometer rang, J. Laser App. 2, 1, 37–42. [CrossRef] [Google Scholar]
  • Saengkaew S., Charinpanikul T., Laurent C., Biscos Y., Lavergne G., Gouesbet G., Gréhan G. (2010) Processing of individual rainbow signals, Exp. Fluids 48, 1, 111–119. [Google Scholar]
  • Van Beeck J.P.A.J., Giannoulis D., Zimmer L., Riethmuller M.L. (1999) Global rainbow thermometry for droplet-temperature measurement, Opt. Lett. 24, 23, 1696–1698. [CrossRef] [PubMed] [Google Scholar]
  • Wang J.J., Gréhan G., Han Y.P., Saengkaew S., Gouesbet G. (2011) Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets, Exp. Fluids 51, 149–159. [Google Scholar]
  • Saengkaew S., Godard G., Blaisot B., Gréhan G. (2009) Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets, Exp. Fluids 47, 839–848. [Google Scholar]
  • Verdier A., Santiago J.M., Vandel A., Saengkaew S., Cabot G., Gréhan G., Renou B. (2017) Experimental study of local flame structures and fuel droplet properties of a spray jet flame, Proc. Combust. Inst. 36, 2595–2602. [Google Scholar]
  • Ouboukhlik M., Saengkaew S., Fournier-Salaun M.C., Estel L., Gréhan G. (2015) Local measurement of mass transfer in a reactive spray for CO2 capture, Can. J. Chem. Eng. 93, 419–426. [Google Scholar]
  • Saengkaew S., Godard G., Gréhan G. (2018) Global Rainbow Technique: Temperature evolution measurements of super-cold droplets, in: ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, July 22–26, 2018. [Google Scholar]
  • Edlén B. (1966) Equation for the refractive index of air, Metrologia 2, 2, 71–80. [Google Scholar]
  • Schiebener P., Straub J.M.H., Levelt Sengers J.M.H., Gallagher J.S. (1990) Refractive index of water and steam as function of wavelength, temperature and density, J. Phys. Chem. Ref. Data 19, 3, 677–717. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.