Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 58
Number of page(s) 10
DOI https://doi.org/10.2516/ogst/2020054
Published online 11 September 2020
  • Abbasi M., Rostami P., Moraveji M.K., Sharifi M. (2018) Generalized analytical solution for gravity drainage phenomena in finite matrix block with arbitrary time dependent inlet boundary condition and variable matrix block size, J. Pet. Sci. Eng. 167, 227–240. [Google Scholar]
  • Al Adasani A., Bai B. (2011) Analysis of EOR projects and updated screening criteria, J. Pet. Sci. Eng. 79, 1, 10–24. [Google Scholar]
  • Al Saedi A.Q., Flori R.E., Kabir C.S. (2018) New analytical solutions of wellbore fluid temperature profiles during drilling, circulating, and cementing operations, J. Pet. Sci. Eng. 170, 206–217. [Google Scholar]
  • Ali S.F. (2003) Heavy oil-evermore mobile, J. Pet. Sci. Eng. 37, 1, 5–9. [Google Scholar]
  • Ambastha A.K. (1989) Pressure transient analysis for composite systems, Stanford University, CA, USA. [Google Scholar]
  • Ambastha A., Ramey H. Jr. (1989) Thermal recovery well test design and interpretation, SPE Form. Evalu. 4, 2, 173–180. [CrossRef] [Google Scholar]
  • App J.F. (2013) Influence of hydraulic fractures on wellbore/sandface temperatures during production, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • App J.F. (2016) Influence of flow geometry on sandface temperatures during single-phase oil production: dimensionless analysis, SPE J. 21, 3, 928–937. [CrossRef] [Google Scholar]
  • Ascencio F., Samaniego F., Rivera J. (2014) A heat loss analytical model for the thermal front displacement in naturally fractured reservoirs, Geothermics 50, 112–121. [Google Scholar]
  • Attanasi E.D., Meyer R.F. (2010) Natural bitumen and extra-heavy oil, Surv. Energy Res. 22, 123–140. [Google Scholar]
  • Beggs H.D., Robinson J. (1975) Estimating the viscosity of crude oil systems, J. Pet. Technol. 27, 9, 1,140–141,141. [CrossRef] [Google Scholar]
  • Bentsen R., Donohoe D. (1969) A dynamic programming model of the cyclic steam injection process, J. Pet. Technol. 21, 12, 1,582–581,596. [CrossRef] [Google Scholar]
  • Boberg T.C., Lantz R.B. (1966) Calculation of the production rate of a thermally stimulated well, J. Pet. Technol. 18, 12, 1,613–611,623. [CrossRef] [Google Scholar]
  • Boyadjiev L., Kamenov O., Kalla S. (2005) On the Lauwerier formulation of the temperature field problem in oil strata, Int. J. Math. Math. Sci. 2005, 10, 1577–1588. [Google Scholar]
  • Butler R.M. (1991) Thermal recovery of oil and bitumen, Prentice Hall, New Jersey, USA. [Google Scholar]
  • Cheng A.D., Ghassemi A., Detournay E. (2001) Integral equation solution of heat extraction from a fracture in hot dry rock, Int. J. Numer. Anal. Meth. Geomech. 25, 13, 1327–1338. [CrossRef] [Google Scholar]
  • Chevarunotai N., Hasan A.R., Kabir C.S., Islam R. (2018) Transient flowing-fluid temperature modeling in reservoirs with large drawdowns, J. Pet. Explor. Prod. Technol. 8, 3, 799–811. [Google Scholar]
  • Fontanilla J.P., Aziz K. (1982) Prediction of bottom-hole conditions for wet steam injection wells, J. Can. Petrol. Technol. 21, 2, 82–88. [CrossRef] [Google Scholar]
  • Ganguly S., Kumar M.M. (2014) Analytical solutions for movement of cold water thermal front in a heterogeneous geothermal reservoir, Appl. Math. Model. 38, 2, 451–463. [Google Scholar]
  • Ghassemi A., Nygren A., Cheng A. (2008) Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis, Geothermics 37, 5, 525–539. [Google Scholar]
  • Green D.W., Willhite G.P. (1998) Enhanced oil recovery, Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, Richardson, TX. [Google Scholar]
  • Gringarten A., Sauty J. (1975) A theoretical study of heat extraction from aquifers with uniform regional flow, J. Geophys. Res. 80, 35, 4956–4962. [Google Scholar]
  • Hashmi G.M., Kabir C.S., Hasan A.R. (2015) Estimating reliable gas rate with transient-temperature modeling for interpreting early-time cleanup data during transient testing, J. Pet. Sci. Eng. 133, 285–295. [Google Scholar]
  • Huang C.S., Yang S.Y., Yeh H.D. (2015) Technical note: Approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer, Hydrol. Earth Syst. Sci. 19, 6, 2639–2647. [Google Scholar]
  • Kovscek A. (2012) Emerging challenges and potential futures for thermally enhanced oil recovery, J. Pet. Sci. Eng. 98, 130–143. [Google Scholar]
  • Li K.Y., Yang S.Y., Yeh H.D. (2010) An analytical solution for describing the transient temperature distribution in an aquifer thermal energy storage system, Hydrol. Proc. 24, 25, 3676–3688. [CrossRef] [Google Scholar]
  • Lin Y.C., Yang S.Y., Fen C.S., Yeh H.D. (2016) A general analytical model for pumping tests in radial finite two-zone confined aquifers with Robin-type outer boundary, J. Hydrol. 540, 1162–1175. [CrossRef] [Google Scholar]
  • Marx J.W., Langenheim R.H. (1959) Reservoir heating by hot fluid injection petroleum transactions, AIME 216, 312–315. [Google Scholar]
  • Perina T., Lee T.-C. (2006) General well function for pumping from a confined, leaky, or unconfined aquifer, J. Hydrol. 317, 3, 239–260. [CrossRef] [Google Scholar]
  • Satman A., Eggenschwiler M., Ramey H.J. Jr (1980) Interpretation of injection well pressure transient data in thermal oil recovery, in: SPE California Regional Meeting, Society of Petroleum Engineers. [Google Scholar]
  • Shaik A.R., Rahman S.S., Tran N.H., Tran T. (2011) Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system, Appl. Therm. Eng. 31, 10, 1600–1606. [Google Scholar]
  • Shaw-Yang Y., Hund-Der Y. (2008) An analytical solution for modeling thermal energy transfer in a confined aquifer system, Hydrogeol. J. 16, 8, 1507–1515. [Google Scholar]
  • Speight J.G. (2016) Introduction to enhanced recovery methods for heavy oil and tar sands, Gulf Professional, Houston. [Google Scholar]
  • Stopa J., Wojnarowski P. (2006) Analytical model of cold water front movement in a geothermal reservoir, Geothermics 35, 1, 59–69. [Google Scholar]
  • Su K., Liao X., Zhao X. (2015) Transient pressure analysis and interpretation for analytical composite model of CO2 flooding, J. Pet. Sci. Eng. 125, 128–135. [Google Scholar]
  • Theis C.V. (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage, Eos Trans. Am. Geophys. Union 16, 2, 519–524. [CrossRef] [Google Scholar]
  • Turki L., Demski J.A., Grader A.S. (1989) Decline curve analysis in composite reservoirs, in: SPE Eastern Regional Meeting, Society of Petroleum Engineers. [Google Scholar]
  • Upreti S.R., Lohi A., Kapadia R.A., El-Haj R. (2007) Vapor extraction of heavy oil and bitumen: A review, Energy Fuel 21, 3, 1562–1574. [CrossRef] [Google Scholar]
  • Wang C.T., Yeh H.D. (2008) Obtaining the steady-state drawdown solutions of constant-head and constant-flux tests, Hydrol. Proc. 22, 17, 3456–3461. [CrossRef] [Google Scholar]
  • Wang C.T., Yeh H.D., Tsai C.S. (2012) Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers, Hydrol. Earth Syst. Sci. 16, 2, 441–449. [Google Scholar]
  • Yeh H.D., Yang S.Y., Li K.Y. (2012) Heat extraction from aquifer geothermal systems, Int. J. Numer. Anal. Meth. Geomech. 36, 1, 85–99. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.