Open Access
Issue
Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 79
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2019054
Published online 06 November 2019
  • Olajire A.A. (2014) Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges, Energy 77, 963–982. [CrossRef] [Google Scholar]
  • Thomas S. (2008) Enhanced oil recovery – an overview, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 63, 9–19. [CrossRef] [Google Scholar]
  • Douarche F., Da Veiga S., Feraille M., Enchéry G., Touzani S., Barsalou R. (2014) Sensitivity analysis and optimization of surfactant-polymer flooding under uncertainties, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69, 603–617. [CrossRef] [Google Scholar]
  • Raffa P., Broekhuis A.A., Picchioni F. (2016) Polymeric surfactants for enhanced oil recovery: A review, J. Pet. Sci. Eng. 145, 723–733. [Google Scholar]
  • Miao L., Li F., Sun D., Wu T., Li Y. (2015) Interfacial and electrokinetic properties of asphaltenes and alkali/surfactant/polymer in produced water system, J. Pet. Sci. Eng. 133, 18–28. [Google Scholar]
  • Rambeau O., Jacob M., Rondon M., Jouenne S., Cordelier P. (2014) A tool to tackle the challenges of the treatment of the back produced viscosified water, in: International Petroleum Technology Conference, 19–22 January, Doha, Qatar. [Google Scholar]
  • Santos R.G., Loh W., Bannwart A.C., Trevisan O.V. (2014) An overview of heavy oil properties and its recovery and transportation methods, Braz. J. Chem. Eng. 31, 571–590. [CrossRef] [Google Scholar]
  • Yu L., Sang Q., Dong M. (2018) Enhanced oil recovery ability of branched preformed particle gel in heterogeneous reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 65. [CrossRef] [Google Scholar]
  • Adasani A.A., Bai B. (2011) Analysis of EOR projects and updated screening criteria, J. Pet. Sci. Eng. 79, 10–24. [Google Scholar]
  • Ma B., Gao B., Yue Q. (2013) Study on emulsification stability of wastewater produced by polymer flooding, J. Pet. Sci. Eng. 110, 27–31. [Google Scholar]
  • Raney K.H., Ayirala S., Chin R.W., Verbeek P. (2012) Surface and subsurface requirements for successful implementation of offshore chemical enhanced oil recovery, in: SPE Production & Operations 27, 3, 294–305. SPE-155116-PA. doi: 10.2118/155116-PA. [CrossRef] [Google Scholar]
  • Argillier J.-F., Henaut I., Nolk C., Vieira R., Roca Leon F., Aanesen B. (2014) Influence of chemical EOR on topside produced water management, in: SPE Improved Oil Recovery Symposium, 12–16 April, Tulsa, OK, USA. SPE-169067-MS. [Google Scholar]
  • Argillier J.-F., Dalmazzone C., Henaut I., Mouazen M., Noik C., Boufarguine M. (2013) Methodological approach for analyzing the impact of chemical EOR on surface processes, in: SPE International Symposium on Oilfield Chemistry, 8–10 April, The Woodlands, TX, USA. SPE 164098. doi: 10.2118/164098-MS. [Google Scholar]
  • Zheng J., Chen B., Thanyamanta W., Hawboldt K., Zhang B., Liu B. (2016) Offshore produced water management: A review of current practice and challenges in harsh/Arctic environments, Mar. Pollut. Bull. 104, 7–19. [Google Scholar]
  • Wang Z., Zhao L., Li F., He J., Chen L. (1999) Characteristics study of hydrocyclone used for separating polymer-flood produced-water, in: Proceedings of the 1999 9th International Offshore and Polar Engineering Conference (ISOPE-99), May 30–June 4, Brest, France. [Google Scholar]
  • Chen H., Tang H., Gong X., Wang J., Liu Y., Duan M., Zhao F. (2015) Effect of partially hydrolyzed polyacrylamide on emulsification stability of wastewater produced from polymer flooding, J. Pet. Sci. Eng. 133, 431–439. [Google Scholar]
  • Thomas A., Gaillard N., Favero C. (2012) Some key features to consider when studying acrylamide-based polymers for chemical enhanced oil recovery, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 887–902. [CrossRef] [Google Scholar]
  • Walsh J.M. (2015) Produced-water-treatment systems: Comparison of North Sea and deepwater Gulf of Mexico, in: SPE Annual Technical Conference and Exhibition, 8–10 October, San Antonio, TX, USA. SPE 159713. [Google Scholar]
  • Zheng F., Quiroga P., Sams G. (2011) Challenges in processing produced emulsion from chemical enhanced oil recovery – polymer flood using polyacrylamide, in: SPE Enhanced Oil Recovery Conference, 19–21 July, Kuala Lumpur, Malaysia. SPE 144322. [Google Scholar]
  • Azizi F., Al Taweel A.M. (2007) Population balance simulation of gas-liquid contacting, Chem. Eng. Sci. 62, 7436–7445. [Google Scholar]
  • Al-Shamrani A.A., James A., Xiao H. (2002) Separation of oil from water by dissolved air flotation, Colloids Surf. A Physicochem. Eng. Aspects 209, 15–26. [CrossRef] [Google Scholar]
  • Moosai R., Dawe R.A. (2003) Gas attachment of oil droplets for gas flotation for oily wastewater cleanup, Sep. Purif. Technol. 33, 303–314. [Google Scholar]
  • Robinson D.L. (2013) Treatment and discharge of produced waters offshore, Filtr. Sep. 50, 2, 20–23. [CrossRef] [Google Scholar]
  • Saththasivam J., Loganathan K., Sarp S. (2016) An overview of oil–water separation using gas flotation systems, Chemosphere 144, 671–680. [Google Scholar]
  • Oliveira R.C.G., Gonzalez G., Oliveira J.F. (1999) Interfacial studies on dissolved gas flotation of oil droplets for water purification, Colloids Surf. A Physicochem. Eng. Aspects 154, 127–135. [CrossRef] [Google Scholar]
  • Rajak V.K., Relish K.K., Kumar S., Mandal A. (2015) Mechanism and kinetics of separation of oil from oil in water emulsion by air flotation, Pet. Sci. Technol. 33, 1861–1868. [Google Scholar]
  • Forret A., Schweitzer J.M., Gauthier T., Krishna R., Schweich D. (2006) Scale up of slurry bubble reactors, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 61, 443–458. [CrossRef] [Google Scholar]
  • Haque M.W., Nigam K.D.P., Srivastava V.K., Joshi J.B., Viswanathan K. (1987) Studies on mixing time in bubble columns with pseudoplastic (carboxymethyl) cellulose solutions, Ind. Eng. Chem. Res. 26, 82–86. [Google Scholar]
  • Hol P.D., Heindel T.J. (2005) Local gas holdup variation in a fiber slurry, Ind. Eng. Chem. Res. 44, 4778–4784. [Google Scholar]
  • Mudde R.F., Harteveld W.K., van den Akker H.E.A. (2009) Uniform flow in bubble columns, Ind. Eng. Chem. Res. 48, 148–158. [Google Scholar]
  • Youssef A.A., Hamed M.E., Grimes J.T., Al-Dahhan M.H., Duduković M.P. (2013) Hydrodynamics of pilot-scale bubble columns: Effect of internals, Ind. Eng. Chem. Res. 52, 43–55. [Google Scholar]
  • Hagesaether L., Jakobsen H.A., Svendsen H.F. (2002) Modeling of the dispersed-phase size distribution in bubble columns, Ind. Eng. Chem. Res. 41, 2560–2570. [Google Scholar]
  • Botello-Álvarez J.E., Baz-Rodríguez S.A., González-Garcia R., Estrada-Baltazar A., Padilla-Medina J.A., González-Alatorre G., Navarrete-Bolaños J.L. (2011) Effect of eletrolytes in aqueous solution on bubble size in gas-liquid bubble columns, Ind. Eng. Chem. Res. 50, 12203–12207. [Google Scholar]
  • Jin H., Lim D.H., Lim H., Kang Y., Jung H., Kim S.D. (2012) Demarcation of large and small bubbles in viscous slurry bubble columns, Ind. Eng. Chem. Res. 51, 2062–2069. [Google Scholar]
  • Lee Y.H., Kim Y.J., Kelkar B.G., Weinberger C.B. (1985) A simple digital sensor for dynamic gas holdup measurements in bubble columns, Ind. Eng. Chem. Res. 24, 105–107. [Google Scholar]
  • Su X., Heindel T.J. (2005) Modeling gas holdup in gas-liquid-fiber semibatch bubble columns, Ind. Eng. Chem. Res. 44, 9355–9363. [Google Scholar]
  • Hooshyar N., Hamersma P.J., Mudde R.F., Ommen J.R. (2010) Gas fraction and bubble dynamics in structured slurry bubble columns, Ind. Eng. Chem. Res. 49, 10689–10697. [Google Scholar]
  • Li X., Zhu W., Liu J., Zhang J., Xu H., Deng X. (2016) Gas holdup in cyclone-static micro-bubble flotation column, Environ. Technol. 37, 7, 785–794. [Google Scholar]
  • Lau R., Peng W., Velazquez-Vargas L.G., Yang G.Q., Fan L.-S. (2004) Gas−liquid mass transfer in high-pressure bubble columns, Ind. Eng. Chem. Res. 43, 1302–1311. [Google Scholar]
  • Saleh S.N., Mohammed A.A., Al-Jubory F.K., Shahzad B. (2018) CFD assessment of uniform bubbly flow in a bubble column, J. Pet. Sci. Eng. 161, 96–107. [Google Scholar]
  • Liu S. (2007) Development of high-performance surfactants for difficult oils. 222 f. Thesis (Doctor of Philosophy), Rice University, Houston, TX. [Google Scholar]
  • Zhao P. (2007) Development of high-performance surfactants for difficult oils. 122 f. Dissertation (Master of Science in Engineering), Faculty of the Graduate School, University of Texas, Austin. [Google Scholar]
  • Zhao P., Jackson A.C., Britton C., Kim D.H., Britton L.N., Levitt D.B., Pope G.A. (2008) Development of high-performance surfactants for difficult oils, in: SPE/DOE Improved Oil Recovery Symposium, 20–23 April, Tulsa, OK, USA. SPE 113432. [Google Scholar]
  • Flaaten A.K. (2007) Experimental study of microemulsion characterization and optimization in enhanced oil recovery: A design approach for reservoirs with high salinity and hardness. 284 f. Thesis (Master of Science in Engineering), Faculty of the Graduate School, University of Texas, Austin. [Google Scholar]
  • Barnes J.R., Smit J.P., Smit J.R., Shpakoff P.G., Raney K.H., Puerto M.C. (2008) Development of surfactants for chemical flooding at difficult reservoir conditions, in: SPE/DOE Improved Oil Recovery Symposium, 20–23 April, Tulsa, OK, USA. SPE 113313. [Google Scholar]
  • Solairaj S., Britton C., Kim D.H., Weerasooriya U., Pope G.A. (2012) Measurement and analysis of surfactant retention, in: SPE Improved Oil Recovery Symposium, 14–18 April, Tulsa, OK, USA, SPE-154247-MS. [Google Scholar]
  • Rashidi M. (2010) Physico-chemistry characterization of sulfonated polyacrylamide polymers for use in polymer flooding, Thesis (Doctor of Philosophy), The University of Bergen, Bergen, Norway. [Google Scholar]
  • Liu Y., Wang Z., Li X., Le X., Wang X.A.S.P. (2014) Flooding produced water: Management, evaluation, disposal and reuse, in: SPE Middle East Health, Safety, Environment & Sustainable Development Conference & Exhibition, 22–24 September, Doha, Qatar. SPE-170396-MS. [Google Scholar]
  • Liu Y., Wang Z., Zhuge X., Zhang H., Le X. (2013) An environmentally-friendly method for disposal of the ASP flooding produced water, in: SPE Artic and Extreme Environments Conference & Exhibition, 15–17 October, Moscow, Russia. SPE 166965. [Google Scholar]
  • Ruzicka M.C., Drahos J., Mena P.C., Teixeira J.A. (2003) Effect of viscosity on homogeneous-heterogeneous flow regime transition in bubble columns, Chem. Eng. J. 96, 15–22. [Google Scholar]
  • Bordel S., Mato R., Villaverde S. (2006) Modelling of the evolution with length of bubble size distributions in bubble columns, Chem. Eng. Sci. 61, 3663–3673. [Google Scholar]
  • Pérez-Garibay R., Martínez-Ramos E., Rubio J. (2012) Gas dispersion measurements in microbubble flotation systems, Miner. Eng. 26, 34–40. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.