Regular Article
The influence of pore system change during CO2 storage on 4D seismic interpretation
National & Local Joint Engineering Research Center of Carbon Capture and Storage Technology, Department of Geology, Northwest University, 710069 Xi’an, PR China
* Corresponding author: lilin_hyg@163.com
Received:
23
April
2019
Accepted:
16
August
2019
A 4D seismic forward model constitutes the foundation of 4D seismic inversion. Here, in combination with the Gassmann equation, the Digby model is improved to calculate the S-wave velocity, and the resulting equation is verified using rock testing results. Then, considering the influences of changes in the pore pressure, CO2 saturation and porosity on the P- and S- wave velocities, rock testing results from a CO2 injection area in the Weyburn field are used to calculate the P- and S-wave velocities of the reservoir. These P- and S-wave velocities are found to overlap under different pressure conditions with or without considering porosity variations. Therefore, two-layer models and well models are developed to simulate synthetic seismograms; the models considering porosity variations may provide greater seismic responses and different Amplitude Versus Offset (AVO) trends in the synthetic seismogram profiles than those without considering porosity variations. Thus, porosity variations must be considered when establishing 4D seismic forward models.
© L. Li & J. Ma, published by IFP Energies nouvelles, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.