Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 90
Number of page(s) 12
Published online 23 December 2019
  • Mäyrä O., Leiviskä K. (2018) Modeling in methanol synthesis, Methanol, Elsevier, pp. 475–492. [CrossRef] [Google Scholar]
  • Dalena F., Senatore A., Marino A., Gordano A., Basile M., Basile A. (2018) Methanol production and applications: An overview, Methanol, Elsevier, pp. 3–28. [CrossRef] [Google Scholar]
  • Alarifi A., Alsobhi S., Elkamel A., Croiset E. (2015) Multiobjective optimization of methanol synthesis loop from synthesis gas via a multibed adiabatic reactor with additional interstage CO2 quenching, Energy Fuels 29, 2, 530–537. [Google Scholar]
  • Tursunov O., Kustov L., Kustov A. (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 5, 30. [CrossRef] [Google Scholar]
  • Farsi M., Jahanmiri A. (2011) Methanol production in an optimized dual-membrane fixed-bed reactor, Chem. Eng. Process.: Process Intensification 50, 11–12, 1177–1185. [CrossRef] [Google Scholar]
  • Wagialla K., Elnashaie S. (1991) Fluidized-bed reactor for methanol synthesis. A theoretical investigation, Ind. Eng. Chem. Res. 30, 10, 2298–2308. [Google Scholar]
  • Struis R.P.W.J., Stucki S., Wiedorn M. (1996) A membrane reactor for methanol synthesis, J. Membr. Sci. 113, 1, 93–100. [CrossRef] [Google Scholar]
  • Rahimpour M., Bayat M., Rahmani F. (2010) Enhancement of methanol production in a novel cascading fluidized-bed hydrogen permselective membrane methanol reactor, Chem. Eng. J. 157, 2–3, 520–529. [Google Scholar]
  • Šetinc M., Levec J. (2001) Dynamics of a mixed slurry reactor for the three-phase methanol synthesis, Chem. Eng. Sci. 56, 21–22, 6081–6087. [Google Scholar]
  • Kung H.H. (1992) Deactivation of methanol synthesis catalysts – A review, Catal. Today 11, 4, 443–453. [Google Scholar]
  • Liu X.-M., Lu G., Yan Z.-F., Beltramini J. (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2, Ind. Eng. Chem. Res. 42, 25, 6518–6530. [Google Scholar]
  • Rezaie N., Jahanmiri A., Moghtaderi B., Rahimpour M. (2005) A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation, Chem. Eng. Process: Process Intensification 44, 8, 911–921. [CrossRef] [Google Scholar]
  • Jahanmiri A., Eslamloueyan R. (2002) Optimal temperature profile in methanol synthesis reactor, Chem. Eng. Commun. 189, 6, 713–741. [Google Scholar]
  • Kordabadi H., Jahanmiri A. (2005) Optimization of methanol synthesis reactor using genetic algorithms, Chem. Eng. J. 108, 3, 249–255. [Google Scholar]
  • Fuad M.N.M., Hussain M.A., Zakaria A. (2012) Optimization strategy for long-term catalyst deactivation in a fixed-bed reactor for methanol synthesis process, Comput. Chem. Eng. 44, 104–126. [Google Scholar]
  • Rahimpour M. (2007) A dual-catalyst bed concept for industrial methanol synthesis, Chem. Eng. Commun. 194, 12, 1638–1653. [Google Scholar]
  • Askari F., Rahimpour M.R., Jahanmiri A., Khosravanipour Mostafazadeh A. (2008) Dynamic simulation and optimization of a dual-type methanol reactor using genetic algorithms, Chem. Eng. Technol.: Ind. Chem. Plant Equip. Process Eng. Biotechnol. 31, 4, 513–524. [Google Scholar]
  • Farsi M., Jahanmiri A. (2014) Dynamic modeling and operability analysis of a dual-membrane fixed bed reactor to produce methanol considering catalyst deactivation, J. Ind. Eng. Chem. 20, 5, 2927–2933. [Google Scholar]
  • Rahimpour M., Elekaei H. (2009) Enhancement of methanol production in a novel fluidized-bed hydrogen-permselective membrane reactor in the presence of catalyst deactivation, Int. J. Hydrogen Energy 34, 5, 2208–2223. [Google Scholar]
  • Rahimpour M., Bayat M., Rahmani F. (2010) Dynamic simulation of a cascade fluidized-bed membrane reactor in the presence of long-term catalyst deactivation for methanol synthesis, Chem. Eng. Sci. 65, 14, 4239–4249. [Google Scholar]
  • Dehghani Z., Bayat M., Rahimpour M. (2014) Sorption-enhanced methanol synthesis: Dynamic modeling and optimization, J. Taiwan Inst. Chem. Eng. 45, 4, 1490–1500. [CrossRef] [Google Scholar]
  • Mirvakili A., Rahimpour M. (2015) Mal-distribution of temperature in an industrial dual-bed reactor for conversion of CO2 to methanol, Appl. Thermal Eng. 91, 1059–1070. [CrossRef] [Google Scholar]
  • Son M., Park M.-J., Kwak G., Park H.-G., Jun K.-W. (2018) Maximum production of methanol in a pilot-scale process, Korean J. Chem. Eng. 35, 2, 355–363. [Google Scholar]
  • Graaf G., Stamhuis E., Beenackers A. (1988) Kinetics of low-pressure methanol synthesis, Chem. Eng. Sci. 43, 12, 3185–3195. [Google Scholar]
  • Hanken L. (1995) Optimization of methanol reactor, Master’s Thesis, The Norwegian University of Science and Technology, Norway. [Google Scholar]
  • Alam I., West D.H., Balakotaiah V. (2016) Transport effects on pattern formation and maximum temperature in homogeneous–heterogeneous combustion, Chem. Eng. J. 288, 99–115. [Google Scholar]
  • Holman J. (2002) Heat transfer, 9th Edn., McGraw Hill, New York, USA. [Google Scholar]
  • Tallmadge J. (1970) Packed bed pressure drop – An extension to higher Reynolds numbers, AIChE J. 16, 6, 1092–1093. [Google Scholar]
  • Fogler H.S. (2010) Essentials of chemical reaction engineering, Pearson Education, London, UK. [Google Scholar]
  • Green D.W., Perry R.H. (1999) Perry’s Chemical Engineers’ handbook, McGraw-Hill Professional, New York, USA. [Google Scholar]
  • Stewart W.E., Lightfoot E.N., Bird R.B. (1962) Transport phenomena, John Wiley & Sons, New York, USA. [Google Scholar]
  • Løvik I., Hillestad M., Hertzberg T. (1998) Long term dynamic optimization of a catalytic reactor system, Comput. Chem. Eng. 22, S707–S710. [Google Scholar]
  • Holland J., Goldberg D. (1989) Genetic algorithms in search, optimization and machine learning, Addison-Wesley, MA, USA. [Google Scholar]
  • Leonzio G. (2017) Optimization through response surface methodology of a reactor producing methanol by the hydrogenation of carbon dioxide, Processes 5, 4, 62. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.