Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 89
Number of page(s) 12
Published online 19 December 2019
  • Abbasi M., Izadmehr M., Karimi M., Sharifi M., Kazemi A. (2017) Analytical study of fluid flow modeling by diffusivity equation including the quadratic pressure gradient term, Comput. Geotech. 89, 1–8. [Google Scholar]
  • Abbasi M., Madani M., Sharifi M., Kazemi A. (2018a) Fluid flow in fractured reservoirs: Exact analytical solution for transient dual porosity model with variable rock matrix block size, J. Pet. Sci. Eng. 164, 571–583. [Google Scholar]
  • Abbasi M., Rostami P., Moraveji M.K., Sharifi M. (2018b) Generalized analytical solution for gravity drainage phenomena in finite matrix block with arbitrary time dependent inlet boundary condition and variable matrix block size, J. Pet. Sci. Eng. 167, 227–240. [Google Scholar]
  • Ahmed T., McKinney P. (2011) Advanced reservoir engineering, Gulf Professional Publishing. [Google Scholar]
  • Barenblatt G., Zheltov I.P., Kochina I. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech. 24, 5, 1286–1303. [CrossRef] [Google Scholar]
  • Bourbiaux B., Ding D. (2016) Simulation of transient matrix-fracture transfers of compressible fluids, Transp. Porous Media 114, 3, 695–717. [Google Scholar]
  • Bourbiaux B., Granet S., Landereau P., Noetinger B., Sarda S., Sabathier J.C. (1999) Scaling up matrix-fracture transfers in dual-porosity models: Theory and application, SPE Annual Technical Conference and Exhibition, 3–6 October, Houston, Texas, Society of Petroleum Engineers. [Google Scholar]
  • Ding D.Y., Farah N., Bourbiaux B., Wu Y.-S., Mestiri I.J.S.J. (2018) Simulation of matrix/fracture interaction in low-permeability fractured unconventional reservoirs, SPE J., 23, 4, 1–389. [CrossRef] [Google Scholar]
  • Farah N., Delorme M., Ding D., Wu Y., Codreanu D.B. (2019) Flow modelling of unconventional shale reservoirs using a DFM-MINC proximity function, J. Pet. Sci. Eng. 173, 222–236. [Google Scholar]
  • Germán E.R.R. (2002) Water infiltration in fractured porous media: In-situ imaging, analytical model, and numerical study, CiteSeerX. [Google Scholar]
  • Gilman J.R., Kazemi H. (1983) Improvements in simulation of naturally fractured reservoirs, Soc. Pet. Eng. J. 23, 4, 695–707. [CrossRef] [Google Scholar]
  • Hassanzadeh H., Pooladi-Darvish M. (2006) Effects of fracture boundary conditions on matrix-fracture transfer shape factor, Transp. Porous Media 64, 1, 51–71. [Google Scholar]
  • Hassanzadeh H., Pooladi-Darvish M., Atabay S. (2009) Shape factor in the drawdown solution for well testing of dual-porosity systems, Adv. Water Resour. 32, 11, 1652–1663. [Google Scholar]
  • Kazemi H. (1969) Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J. 9, 4, 451–462. [CrossRef] [Google Scholar]
  • Kuchuk F.J., Habashy T., Torres-Verdin C. (1996) A nonlinear approximation for the pressure behavior of heterogeneous reservoirs, SPE J. 1, 3, 229–242. [CrossRef] [Google Scholar]
  • Landereau P., Noetinger B., Quintard M. (2001) Quasi-steady two-equation models for diffusive transport in fractured porous media: Large-scale properties for densely fractured systems, Adv. Water Resour. 24, 8, 863–876. [Google Scholar]
  • Lim K., Aziz K. (1995) Matrix-fracture transfer shape factors for dual-porosity simulators, J. Pet. Sci. Eng. 13, 3–4, 169–178. [Google Scholar]
  • Noetinger B., Estebenet T.J.T. (2000) Up-scaling of double porosity fractured media using continuous-time random walks methods, Transp. Porous Media 39, 3, 315–337. [Google Scholar]
  • Noetinger B., Estebenet T., Landereau P.J.T. (2001a) A direct determination of the transient exchange term of fractured media using a continuous time random walk method, Transp. Porous Media 44, 3, 539–557. [Google Scholar]
  • Noetinger B., Estebenet T., Quintard M.J.T. (2001b) Up-scaling flow in fractured media: Equivalence between the large scale averaging theory and the continuous time random walk method, Transp. Porous Media 43, 3, 581–596. [Google Scholar]
  • Rangel-German E.R., Kovscek A.R. (2006) Time-dependent matrix-fracture shape factors for partially and completely immersed fractures, J. Pet. Sci. Eng. 54, 3–4, 149–163. [Google Scholar]
  • Rangel-German E.R., Kovscek A.R., Akin S. (2010) Time-dependent shape factors for uniform and non-uniform pressure boundary conditions, Transp. Porous Media 83, 3, 591–601. [Google Scholar]
  • Stewart G. (2011) Well test design & analysis, PennWell Corporation. [Google Scholar]
  • Wang L., Yang S., Meng Z., Chen Y., Qian K., Han W., Wang D. (2018) Time-dependent shape factors for fractured reservoir simulation: Effect of stress sensitivity in matrix system, J. Pet. Sci. Eng. 163, 556–569. [Google Scholar]
  • Warren J., Root P.J. (1963) The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. 3, 3, 245–255. [CrossRef] [Google Scholar]
  • Zimmerman R.W. (2002) Flow in porous media. [Google Scholar]
  • Zimmerman R.W., Chen G., Hadgu T., Bodvarsson G.S. (1993) A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow, Water Resour. Res. 29, 7, 2127–2137. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.