Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Numéro d'article 90
Nombre de pages 12
DOI https://doi.org/10.2516/ogst/2019062
Publié en ligne 23 décembre 2019
  • Mäyrä O., Leiviskä K. (2018) Modeling in methanol synthesis, Methanol, Elsevier, pp. 475–492. [CrossRef] [Google Scholar]
  • Dalena F., Senatore A., Marino A., Gordano A., Basile M., Basile A. (2018) Methanol production and applications: An overview, Methanol, Elsevier, pp. 3–28. [CrossRef] [Google Scholar]
  • Alarifi A., Alsobhi S., Elkamel A., Croiset E. (2015) Multiobjective optimization of methanol synthesis loop from synthesis gas via a multibed adiabatic reactor with additional interstage CO2 quenching, Energy Fuels 29, 2, 530–537. [Google Scholar]
  • Tursunov O., Kustov L., Kustov A. (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 5, 30. [CrossRef] [Google Scholar]
  • Farsi M., Jahanmiri A. (2011) Methanol production in an optimized dual-membrane fixed-bed reactor, Chem. Eng. Process.: Process Intensification 50, 11–12, 1177–1185. [CrossRef] [Google Scholar]
  • Wagialla K., Elnashaie S. (1991) Fluidized-bed reactor for methanol synthesis. A theoretical investigation, Ind. Eng. Chem. Res. 30, 10, 2298–2308. [Google Scholar]
  • Struis R.P.W.J., Stucki S., Wiedorn M. (1996) A membrane reactor for methanol synthesis, J. Membr. Sci. 113, 1, 93–100. [CrossRef] [Google Scholar]
  • Rahimpour M., Bayat M., Rahmani F. (2010) Enhancement of methanol production in a novel cascading fluidized-bed hydrogen permselective membrane methanol reactor, Chem. Eng. J. 157, 2–3, 520–529. [Google Scholar]
  • Šetinc M., Levec J. (2001) Dynamics of a mixed slurry reactor for the three-phase methanol synthesis, Chem. Eng. Sci. 56, 21–22, 6081–6087. [Google Scholar]
  • Kung H.H. (1992) Deactivation of methanol synthesis catalysts – A review, Catal. Today 11, 4, 443–453. [Google Scholar]
  • Liu X.-M., Lu G., Yan Z.-F., Beltramini J. (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2, Ind. Eng. Chem. Res. 42, 25, 6518–6530. [Google Scholar]
  • Rezaie N., Jahanmiri A., Moghtaderi B., Rahimpour M. (2005) A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation, Chem. Eng. Process: Process Intensification 44, 8, 911–921. [CrossRef] [Google Scholar]
  • Jahanmiri A., Eslamloueyan R. (2002) Optimal temperature profile in methanol synthesis reactor, Chem. Eng. Commun. 189, 6, 713–741. [Google Scholar]
  • Kordabadi H., Jahanmiri A. (2005) Optimization of methanol synthesis reactor using genetic algorithms, Chem. Eng. J. 108, 3, 249–255. [Google Scholar]
  • Fuad M.N.M., Hussain M.A., Zakaria A. (2012) Optimization strategy for long-term catalyst deactivation in a fixed-bed reactor for methanol synthesis process, Comput. Chem. Eng. 44, 104–126. [Google Scholar]
  • Rahimpour M. (2007) A dual-catalyst bed concept for industrial methanol synthesis, Chem. Eng. Commun. 194, 12, 1638–1653. [Google Scholar]
  • Askari F., Rahimpour M.R., Jahanmiri A., Khosravanipour Mostafazadeh A. (2008) Dynamic simulation and optimization of a dual-type methanol reactor using genetic algorithms, Chem. Eng. Technol.: Ind. Chem. Plant Equip. Process Eng. Biotechnol. 31, 4, 513–524. [Google Scholar]
  • Farsi M., Jahanmiri A. (2014) Dynamic modeling and operability analysis of a dual-membrane fixed bed reactor to produce methanol considering catalyst deactivation, J. Ind. Eng. Chem. 20, 5, 2927–2933. [Google Scholar]
  • Rahimpour M., Elekaei H. (2009) Enhancement of methanol production in a novel fluidized-bed hydrogen-permselective membrane reactor in the presence of catalyst deactivation, Int. J. Hydrogen Energy 34, 5, 2208–2223. [Google Scholar]
  • Rahimpour M., Bayat M., Rahmani F. (2010) Dynamic simulation of a cascade fluidized-bed membrane reactor in the presence of long-term catalyst deactivation for methanol synthesis, Chem. Eng. Sci. 65, 14, 4239–4249. [Google Scholar]
  • Dehghani Z., Bayat M., Rahimpour M. (2014) Sorption-enhanced methanol synthesis: Dynamic modeling and optimization, J. Taiwan Inst. Chem. Eng. 45, 4, 1490–1500. [CrossRef] [Google Scholar]
  • Mirvakili A., Rahimpour M. (2015) Mal-distribution of temperature in an industrial dual-bed reactor for conversion of CO2 to methanol, Appl. Thermal Eng. 91, 1059–1070. [CrossRef] [Google Scholar]
  • Son M., Park M.-J., Kwak G., Park H.-G., Jun K.-W. (2018) Maximum production of methanol in a pilot-scale process, Korean J. Chem. Eng. 35, 2, 355–363. [Google Scholar]
  • Graaf G., Stamhuis E., Beenackers A. (1988) Kinetics of low-pressure methanol synthesis, Chem. Eng. Sci. 43, 12, 3185–3195. [Google Scholar]
  • Hanken L. (1995) Optimization of methanol reactor, Master’s Thesis, The Norwegian University of Science and Technology, Norway. [Google Scholar]
  • Alam I., West D.H., Balakotaiah V. (2016) Transport effects on pattern formation and maximum temperature in homogeneous–heterogeneous combustion, Chem. Eng. J. 288, 99–115. [Google Scholar]
  • Holman J. (2002) Heat transfer, 9th Edn., McGraw Hill, New York, USA. [Google Scholar]
  • Tallmadge J. (1970) Packed bed pressure drop – An extension to higher Reynolds numbers, AIChE J. 16, 6, 1092–1093. [Google Scholar]
  • Fogler H.S. (2010) Essentials of chemical reaction engineering, Pearson Education, London, UK. [Google Scholar]
  • Green D.W., Perry R.H. (1999) Perry’s Chemical Engineers’ handbook, McGraw-Hill Professional, New York, USA. [Google Scholar]
  • Stewart W.E., Lightfoot E.N., Bird R.B. (1962) Transport phenomena, John Wiley & Sons, New York, USA. [Google Scholar]
  • Løvik I., Hillestad M., Hertzberg T. (1998) Long term dynamic optimization of a catalytic reactor system, Comput. Chem. Eng. 22, S707–S710. [Google Scholar]
  • Holland J., Goldberg D. (1989) Genetic algorithms in search, optimization and machine learning, Addison-Wesley, MA, USA. [Google Scholar]
  • Leonzio G. (2017) Optimization through response surface methodology of a reactor producing methanol by the hydrogenation of carbon dioxide, Processes 5, 4, 62. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.