Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 48
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2019020
Published online 21 May 2019
  • Sloan E.D. Jr (2003) Fundamental principles and applications of natural gas hydrates, Nature 426, 6964, 353–363. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Sloan D., Koh C., Sum A.K. (2010) Natural gas hydrates in flow assurance, Gulf Professional Publishing, United States. [Google Scholar]
  • Hammerschmidt E.G. (1934) Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem. 26, 851–855. [Google Scholar]
  • Lederhos J.P., Long J.P., Sum A., Christiansen R.L., Jr E.D.S. (1996) Effective kinetic inhibitors for natural gas hydrates, Chem. Eng. Sci 51, 8, 1221–1229. [Google Scholar]
  • Daraboina N., Malmos C., von Solms N. (2013) Synergistic kinetic inhibition of natural gas hydrate formation, Fuel 108, 11, 749–757. [CrossRef] [Google Scholar]
  • Saikia T., Mahto V. (2018) Temperature augmented visual method for initial screening of hydrate inhibitors, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 1. [CrossRef] [Google Scholar]
  • Vysniauskas A., Bishnoi P.R. (1983) A kinetic study of methane hydrate formation, Chem. Eng. Sci. 38, 7, 1061–1072. [Google Scholar]
  • Makogon Y.F., Holditch S.A., Makogon T.Y. (2007) Natural gas-hydrates – A potential energy source for the 21st Century, J. Pet. Sci. Eng. 56, 1, 14–31. [Google Scholar]
  • Chong Z.R., Yang S.H.B., Babu P. (2016) Review of natural gas hydrates as an energy resource: Prospects and challenges, Appl. Energy 162, 1633–1652. [Google Scholar]
  • Hao Y.M., Li X.Z., Li S.X., Lü G.Z., Liu Y.Y., Wei X.L. (2018) Heat conduction and thermal convection on thermal front movement during natural gas hydrate thermal stimulation exploitation, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 40. [CrossRef] [Google Scholar]
  • Song Y., Yang L., Zhao J. (2014) The status of natural gas hydrate research in China: A review, Renew. Sust. Energ. Rev. 31, 2, 778–791. [CrossRef] [Google Scholar]
  • Max M.D., Johnson A.H. (2014) Hydrate petroleum system approach to natural gas hydrate exploration, Petrol. Geosci. 20, 2, 187–199. [CrossRef] [Google Scholar]
  • Vedachalam N., Srinivasalu S., Rajendran G. (2015) Review of unconventional hydrocarbon resources in major energy consuming countries and efforts in realizing natural gas hydrates as a future source of energy, J. Nat. Gas Sci. Eng. 26, 163–175. [Google Scholar]
  • Boswell R., Collett T.S. (2011) Current perspectives on gas hydrate resources, Energ. Environ. Sci. 4, 4, 1206–1215. [CrossRef] [Google Scholar]
  • Zhou S., Chen W., Qingping L.I. (2017) Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area, China Offshore Oil Gas, 1–8. [Google Scholar]
  • Zhou S., Zhao J., Li Q. (2018) Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization, Nat. Gas Ind. B, 118–131. [CrossRef] [Google Scholar]
  • Balakin B.V., Hoffmann A.C., Kosinski P. (2011) Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow, Chem. Eng. Sci. 66, 4, 755–765. [Google Scholar]
  • Balakin B.V., Hoffmann A.C., Kosinski P. (2010) Population balance model for nucleation, growth, aggregation, and breakage of hydrate particles in turbulent flow, AIChE J. 56, 8, 2052–2062. [Google Scholar]
  • Fatnes E.D. (2010) Numerical simulations of the flow and plugging behaviour of hydrate particles, The University of Bergen, Bergen, Norway, Hydrate. [Google Scholar]
  • Song G.C., Li Y.X., Wang W.C. (2018) Investigation on the mechanical properties and mechanical stabilities of pipewall hydrate deposition by modelling and numerical simulation, Chem. Eng. Sci. 192, 477–487. [Google Scholar]
  • Song G.C., Li Y.X., Wang W.C. (2018) Hydrate agglomeration modelling and pipeline hydrate slurry flow behavior simulation, Chin. J. Chem. Eng, 32–43. [Google Scholar]
  • Song G.C., Li Y.X., Wang W.C. (2018) Numerical simulation of hydrate slurry flow behavior in oil-water systems based on hydrate agglomeration modelling, J. Pet. Sci. Eng. 169, 393–404. [Google Scholar]
  • Song G.C., Li Y.X., Wang W.C. (2018) Numerical simulation of pipeline hydrate particle agglomeration based on population balance theory, J. Nat. Gas Sci. Eng. 51, 251–261. [Google Scholar]
  • Liu Y., Tang X., Hu K. (2018) Study on flow characteristics of natural gas hydrate slurry with decomposition in vertical tube, Chemistry, 267–273. [Google Scholar]
  • Balakin B.V., Pedersen H., Kilinc Z., Hoffmann A.C., Kosinski P., Hoiland S. (2010) Turbulent flow of Freon R11 hydrate slurry, J. Pet. Sci. Eng. 70, 3–4, 177–182. [Google Scholar]
  • Ding J., Gidaspow D. (1990) A bubbling fluidization model using kinetic theory of granular flow, AIChE J. 36, 4, 523–538. [Google Scholar]
  • Pabst W. (2004) Fundamental considerations on suspension rheology, Proc. Royal Soc. Lond. A Math. Phys. Eng. Sci. 48, 1, 6–13. [Google Scholar]
  • Thomas D.G. (1965) Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci. 20, 3, 267–277. [Google Scholar]
  • Ramkrishna D. (2000) Population balances: Theory and applications to particulate systems in engineering, Academic Press, United Kingdom, London. [Google Scholar]
  • Camp T.R., Stein P.C. (1943) Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Eng. 85, 219–237. [Google Scholar]
  • Abrahamson J. (1975) Collision rates of small particles in a vigorously turbulent fluid, Chem. Eng. Sci 30, 11, 1371–1379. [Google Scholar]
  • Saffman P.G., Turner J.S. (1956) On the collision of drops in turbulent clouds, J. Fluid Mech. 1, 1, 16–30. [Google Scholar]
  • Van de Ven T.G.M., Mason S.G. (1977) The microrheology of colloidal dispersions VII. Orthokinetic doublet formation of spheres, Colloid Polym. Sci. 255, 5, 468–479. [Google Scholar]
  • Filimonov R. (2014) CFD modeling of dispersion water feed in wastewater cleaning application, MSc Dissertation, Lappeenranta University of Technology, Finnish. [Google Scholar]
  • Song G.C., Li Y.X., Wang W.C. (2017) Investigation of hydrate plugging in natural gas + diesel oil + water systems using a high-pressure flow loop, Chem. Eng. Sci. 158, 480–489. [Google Scholar]
  • Lv X.F., Shi B.H., Wang Y., Tang Y.X., Wang L.Y., Gong J. (2015) Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 70, 6, 1111–1124. [CrossRef] [Google Scholar]
  • Balachandar S., Eaton J.K. (2010) Turbulent dispersed multiphase flow, Adv. Mech. 42,1, 111–133. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.