Numerical methods and HPC
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Numerical methods and HPC
Article Number 49
Number of page(s) 25
Published online 27 May 2019
  • Lee E.A., Seshia S.A. (2016) Introduction to embedded systems: A cyber-physical systems approach, Mit Press, Cambridge, MA. [Google Scholar]
  • Van der Auweraer H., Anthonis J., De Bruyne S., Leuridan J. (2013) Virtual engineering at work: The challenges for designing mechatronic products, Eng. Comput. 29, 3, 389–408. [Google Scholar]
  • Kübler R., Schiehlen W. (2000) Modular simulation in multibody system dynamics, Multibody Syst. Dyn. 4, 2–3, 107–127. [Google Scholar]
  • Blochwitz T., Otter M., Arnold M., Bausch C., Clauß C., Elmqvist H., Junghanns A., Mauss J., Monteiro M., Neidhold T., Neumerkel D., Olsson H., Peetz J.V., Wolf S. (2011) The functional mockup interface for tool independent exchange of simulation models, in: Proc. of the 8th International Modelica Conference, March 20–22, Dresden, Germany. [Google Scholar]
  • Gomes C., Thule C., Broman D., Larsen P.G., Vangheluwe H. (2017) Co-simulation: State of the art. arXiv preprint arXiv:1702.00686. [Google Scholar]
  • Sirin G., Paredis C.J.J., Yannou B., Coatanéa E., Landel E. (2015) A model identity card to support simulation model development process in a collaborative multidisciplinary design environment, IEEE Syst. J. 9, 4, 1151–1162. [CrossRef] [Google Scholar]
  • Sutter H. (2005) The free lunch is over: A fundamental turn toward concurrency in software, Dr. Dobb’s J. 30, 3, 202–210. [Google Scholar]
  • Gebremedhin M., Hemmati Moghadam A., Fritzson F., Stavaker K. (2012) A data-parallel algorithmic Modelica extension for efficient execution on multi-core platforms, in: Proc. of the 9th International Modelica Conference, September 3–5, Munich, Germany. [Google Scholar]
  • Elmqvist H., Mattsson S.E., Olsson H. (2014) Parallel model execution on many cores, in: Proc. of the 10th International Modelica Conference, March 10–12, Lund, Sweden. [Google Scholar]
  • Galtier V., Vialle S., Dad C., Tavella J.P., Lam-Yee-Mui J.P., Plessis G. (2015) FMI-based distributed multi-simulation with DACCOSIM, in: Proc. of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, April 12–15, Alexandria, Virginia, pp. 804–811. [Google Scholar]
  • Ben Khaled A., Ben Gaid M., Pernet N., Simon D. (2014) Fast multi-core co-simulation of cyber-physical systems: Application to internal combustion engines, Simulat. Pract. Theory 47, 79–91. [CrossRef] [Google Scholar]
  • Saidi S.E., Pernet N., Sorel Y., Ben Khaled A. (2016) Acceleration of FMU co-simulation on multi-core architectures, in: Proc. of the First Japanese Modelica Conference, May 23–24, Tokyo, Japan. [Google Scholar]
  • Darte A., Robert Y., Vivien F. (2012) Scheduling and automatic Parallelization, Springer Science Business Media, Berlin, Germany. [Google Scholar]
  • Kohler W.H. (1975) A preliminary evaluation of the critical path method for scheduling tasks on multiprocessor systems, IEEE T. Comput. 100, 12, 1235–1238. [CrossRef] [Google Scholar]
  • Ramamritham K. (1995) Allocation and scheduling of precedence-related periodic tasks, IEEE T. Parall. Distr. 6, 4, 412–420. [CrossRef] [Google Scholar]
  • Blażewicz J., Pesch E., Sterna M. (2000) The disjunctive graph machine representation of the job shop scheduling problem, Eur. J. Operation. Res. 127, 2, 317–331. [CrossRef] [Google Scholar]
  • Gallai T. (1968) On directed paths and circuits, in: Theory of Graphs, Academic Press, New York, NY, pp. 115–118. [Google Scholar]
  • Roy B. (1967) Nombre chromatique et plus longs chemins d’un graphe, Revue française d’informatique et de recherche opérationnelle 1, 5, 129–132, in French. [Google Scholar]
  • Vitaver L.M. (1962) Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix, Dokl. Akad. Nauk SSSR+ 147, 758–759. [Google Scholar]
  • Hasse M., Reichel H. (1966) Zur algebraischen Begründung der Graphentheorie. III, Math. Nachr. 31, 5–6, 335–345, in German. [CrossRef] [Google Scholar]
  • Karp R.M. (1972) Reducibility among combinatorial problems, in: Complexity of Computer Computations, Springer, Boston, MA, pp. 85–103. [Google Scholar]
  • Ries B. (2007) Coloring some classes of mixed graphs, Discrete Appl. Math. 155, 1, 1–6. [Google Scholar]
  • Andreev G.V., Sotskov Y.N., Werner F. (2000) Branch and bound method for mixed graph coloring and scheduling, in: Proc. of the 16th International Conference on CAD/CAM, Robotics and Factories of the Future, CARS and FOF, June, Port of Spain, Trinidad, West Indies, pp. 1–8. [Google Scholar]
  • Sotskov Y.N., Tanaev V.S., Werner F. (2002) Scheduling problems and mixed graph colorings, Optimization 51, 3, 597–624. [Google Scholar]
  • Al-Anzi F.S., Sotskov Y.N., Allahverdi A., Andreev G. (2006) Using mixed graph coloring to minimize total completion time in job shop scheduling, Appl. Math. Comput. 182, 2, 1137–1148. [Google Scholar]
  • Grandpierre T., Lavarenne C., Sorel Y. (1999) Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors, in: Proc. of the 7th International Workshop on Hardware/Software Co-Design, CODES’99, March 3, Rome, Italy. [Google Scholar]
  • Berkelaar M., Eikland K., Notebaert P. (2004) lpsolve: Open source (mixed-integer) linear programming system, Eindhoven University of Technology, Eindhoven, Netherlands. [Google Scholar]
  • Gurobi Optimization, LLC (2016) Gurobi optimizer reference manual, Beaverton, Oregon, USA. [Google Scholar]
  • IBM ILOG (2017) CPLEX User’s Manual, IBM Corp. Armonk, New York, USA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.