Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 47
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2019016
Published online 21 May 2019
  • Abou-Khousa M., Al-Durra A., Al-Wahedi K. (2015) Microwave sensing system for real-time monitoring of solid contaminants in gas flows, IEEE Sens. J. 15, 9, 5296–5302. [Google Scholar]
  • Aguirre A.H., Zavala A.M., Diharce E.V., Rionda S.B. (2007) COPSO: constrained Optimization via PSO algorithm, Center for Research in Mathematics (CIMAT), Guanajuato, Mexico, 30 p. Technical Report No. I-07-04/22-02-2007. [Google Scholar]
  • Al-Qabandi S., Khuraibut Y., Al-Inzi M. (2015) Integrated Solution to Mitigate and Prevent Black Powder Phenomena in West Kuwait Operation Facilities, Proc. Conference on SPE Kuwait Oil and Gas Show, 11–14 October, Mishref, Kuwait. SPE-175291-MS. [Google Scholar]
  • Babonneau F., Nesterov Y., Vial J.P. (2012) Design and operations of gas transmission networks, Oper. Res. 60, 1, 34–47. [Google Scholar]
  • Baldwin R.M. (1998) Technical assessment: “Black Powder” in the Gas Industry – sources, characteristics, and treatment, Gas Machinery Research Council Report TA, pp. 97–104. [Google Scholar]
  • Banda M.K., Herty M., Klar A. (2006) Gas flow in pipeline networks, NHM 1, 1, 41–56. [CrossRef] [Google Scholar]
  • Beavers J.A., Thompson N.G. (2006) External corrosion of oil and natural gas pipelines, ASM Handbook 13, 1015–1025. [Google Scholar]
  • Cagnina L.C., Esquivel S.C., Coello C.A.C. (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer, Informatica 32, 3. [Google Scholar]
  • Cattanach K., Jovancicevic V., Ramachandran S. (2011) Development of new corrosion inhibitor to prevent black powder formation using quartz crystal microbalance technique, Proc. Conference on NACE international CORROSION. No. 11093. [Google Scholar]
  • Delice Y., Aydoğan E.K., Özcan U., İlkay M.S. (2017) A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing, J. Intell. Manuf. 28, 1, 23–36. [Google Scholar]
  • Eberhart R.C., Shi Y. (1998) Comparison between genetic algorithms and particle swarm optimization, Evolutionary programming VII: Proc. Conference on 7th Annual Evolutionary Programming, pp. 611–616. [Google Scholar]
  • Fan F.G., Ahmadi G. (1993) A sublayer model for turbulent deposition of particles in vertical ducts with smooth and rough surfaces, J. Aerosol Sci. 24, 45–64. [Google Scholar]
  • Filali A., Khezzar L., Alshehhi M., Kharoua N. (2016) A one-D approach for modeling transport and deposition of Black Powder particles in gas network, J. Nat. Gas Sci. Eng. 28, 241–253. [Google Scholar]
  • Hu X., Eberhart R. (2002) Solving constrained nonlinear optimization problems with particle swarm optimization, Proc. Conference on the Sixth World Multiconference on Systemics, Cybernetics and Informatics, 14–18 July, Orlando, FL, USA , Vol. 5, pp. 203–206. [Google Scholar]
  • Kaipio J. (2008) Modeling of uncertainties in statistical inverse problems, J. Phys. Confer. Ser. 135, 1, 107–118. [CrossRef] [Google Scholar]
  • Kennedy J., Eberhart R. (1995) Particle Swarm Optimization, Proc. on IEEE International Conference on Neural Networks. IV, 27 November–1 December, 1995, Perth, WA, Australia, Australia, pp. 1942–1948. [Google Scholar]
  • Khan T.S., Alshehhi M.S. (2015) Review of black powder in gas pipelines–An industrial perspective, J. Nat. Gas Sci. Eng. 25, 66–76. [Google Scholar]
  • Khan T.S., Alshehhi M.S., Stephen S., Khezzar L. (2015) Characterization and preliminary root cause identification of black powder content in a gas transmission network – a case study, J. Nat. Gas Sci. Eng. 27, 769–775. [Google Scholar]
  • Kharoua N., Alshehhi M., Khezzar L. (2015) Prediction of Black Powder distribution in junctions using the Discrete Phase Model, Powder Technol. 286, 202–211. [Google Scholar]
  • Kharoua N., Alshehhi M., Khezzar L., Filali A. (2017) CFD prediction of Black Powder particles’ deposition in vertical and horizontal gas pipelines, J. Petrol. Sci. Eng. 149, 822–833. [CrossRef] [Google Scholar]
  • Liu C.A. (2008) New dynamic constrained optimization PSO algorithm, Natural Computation, Proc. Conference on the 4th ICNC’08, 18–20 October 2008, Jinan, China, Vol. 7, pp. 650–653. [Google Scholar]
  • Madoliat R., Khanmirza E., Pourfard A. (2017) Application of PSO and cultural algorithms for transient analysis of natural gas pipeline, J. Petrol. Sci. Eng. 149, 504–514. [Google Scholar]
  • Marini F., Walczak B. (2015) Particle Swarm Optimization (PSO): A tutorial, Chemometr. Intell. Lab. Syst. 149, 153–165. [Google Scholar]
  • Min Y., Jiayue Z., Damin Z. (2017) Immunization strategy based on discrete particle swarm optimization algorithm in BBV network, Proc. Conference IEEE Intelligent Systems and Control, 5–6 January 2017, Coimbatore, India, pp. 208–211. [Google Scholar]
  • Parsopoulos K.E., Vrahatis M.N. (2002) Particle swarm optimization method for constrained optimization problems, Intell. Technol. Theory Appl. New Trends Intell. Technol. 76, 1, 214–220. [Google Scholar]
  • Saravanan R. (2006) Manufacturing optimization through intelligent techniques, CRC Press, FL, USA. [Google Scholar]
  • Sherik A.M., Zaidi S.R., Tuzan E.V. (2008) Black powder in gas transmission systems, Proc. Conference on CORROSION, 16–20 March, New Orleans, LA, pp. 16–20. [Google Scholar]
  • Sherik A.M. (2008) Black powder: study examines sources, makeup in dry gas system, Oil Gas J. 106, 30, 54–59. [Google Scholar]
  • Shiono N., Suzuki H. (2016) Optimal pipe-sizing problem of tree-shaped gas distribution networks, Eur. J. Oper. Res. 252, 2, 550–560. [Google Scholar]
  • Tarantola A. (1987) Method for data fitting and model parameter estimation. Inversion Problem Theory, Elsevier Science, New York, NY. [Google Scholar]
  • Tobin J., Shambaugh P. (2006) The crucial link between natural gas production and its transportation to market, Proc. Conference on Stages in the production of pipeline-quality natural gas and NGLs. Energy Information Administration, Natural Gas Annual. pp. 11. [Google Scholar]
  • Trifilieff O., Wines T.H. (2009) Black powder removal from transmission pipelines: Diagnostics and solutions, Proc. Conference on Pipeline Rehabilitation and Maintenance, January 19–21, 2009, Bahrain, pp. 19–21. [Google Scholar]
  • Tsochatzidis N.A., Maroulis K.E. (2007) Methods help remove black powder from gas pipelines, Oil Gas J. 105, 10, 52. [Google Scholar]
  • Wiak S., Krawczyk A., Dolezel I., (eds), (2008) Intelligent computer techniques in applied electromagnetics, Springer, Berlin, Heidelberg. [CrossRef] [Google Scholar]
  • Wood N.B. (1981) A simple method for the calculation of turbulent deposition to smooth and rough surfaces, J. Aerosol Sci. 12, 3, 275–290. [Google Scholar]
  • Wu X., Li C., Jia W., He Y. (2014) Optimal operation of trunk natural gas pipelines via an inertia-adaptive particle swarm optimization algorithm, J. Nat. Gas Sci. Eng. 21, 10–18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.