Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 67
Number of page(s) 13
Published online 29 August 2019
  • Dalkilic A.S., Wongwises S. (2010) An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps, Exper. Therm. Fluid Sci. 34, 6, 692–705. doi: 10.1016/j.expthermflusci.2009.12.011. [CrossRef] [Google Scholar]
  • Baker O. (1953) Design for simultaneous flow of oil and gas, in: Fall meeting of the petroleum branch of AIME, Society of Petroleum Engineers, Dallas, USA, 856–863. doi: 10.2118/323-G. [Google Scholar]
  • Cheng L., Ribatski G., Wojtan L., Thome J.R. (2006) New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Trans. 49, 21, 4082–4094. doi: 10.1016/j.ijheatmasstransfer.2006.04.003. [CrossRef] [Google Scholar]
  • Kattan N., Thome J.R., Favrat D. (1998) Flow boiling in horizontal tubes. Part 1: Development of a diabatic two-phase flow pattern map, J. Heat Trans. 120, 1, 140–147. doi: 10.1115/1.2830037. [CrossRef] [Google Scholar]
  • Kattan N., Thome J.R., Favrat D. (1998) Flow boiling in horizontal tubes: Part 2 – New heat transfer data for five refrigerants, J. Heat Trans. 120, 1, 148–155. doi: 10.1115/1.2830038. [CrossRef] [Google Scholar]
  • Kattan N., Thome J.R., Favrat D. (1998) Flow boiling in horizontal tubes: Part 3 – Development of a new heat transfer model based on flow pattern, J. Heat Trans. 120, 1, 155–165. doi: 10.1115/1.2830039. [Google Scholar]
  • Ghajar A.J., Tang C.C. (2007) Heat transfer measurements, flow pattern maps, and flow visualization for non-boiling two-phase flow in horizontal and slightly inclined pipe, Heat Trans. Eng. 28, 6, 525–540. doi: 10.1080/01457630701193906. [CrossRef] [Google Scholar]
  • Ghajar A.J. (2005) Non-boiling heat transfer in gas-liquid flow in pipes: A tutorial, J. Braz. Soc. Mech. Sci. Eng. 27, 46–73. doi: 10.1590/S1678-58782005000100004. [CrossRef] [Google Scholar]
  • Shoham O. (1982) Flow pattern transition and characterization in gas-liquid two phase flow in inclined pipes, PhD Thesis, Tel-Aviv University. [Google Scholar]
  • Taitel Y., Dukler A.E. (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J. 22, 1, 47–55. doi: 10.1002/aic.690220105. [CrossRef] [Google Scholar]
  • Hewitt G.F., Roberts D.N. (1969) Studies of two-phase flow patterns by simultaneous X-ray and flash photography, Technical report, Atomic Energy Research Establishment, Harwell, UK. [Google Scholar]
  • Cheng L., Ribatski G., Thome J.R. (2008) Two-phase flow patterns and flow-pattern maps: Fundamentals and applications, Appl. Mech. Rev. 61, 5, 1–28. doi: 10.1115/1.2955990. [CrossRef] [Google Scholar]
  • Govier G.W., Radford B.A., Dun J.S.C. (1957) The upwards vertical flow of air–water mixtures – effect of air and water rates on flow pattern, holdup and pressure gradient, Can. J. Chem. Eng. 35, 58–70. [Google Scholar]
  • Griffith P., Wallis G.B. (1961) Two-phase slug flow, Trans. ASME. J. Heat Transfer 83, 307–320. [CrossRef] [Google Scholar]
  • Golan L.P., Stenning A.H. (1969–1970) Two-phase vertical flow maps, Proc. Inst. Chem. Engrs. 184, Pt-3. [Google Scholar]
  • Oshinowo T., Charles M.E. (1974) Vertical two-phase flow. Flow pattern correlations, Can. J. Chem. Eng. 52, 25–35. [CrossRef] [Google Scholar]
  • Taitel Y., Barnea D., Dukler A.E. (1980) Modelling flow pattern transitions for steady upward gas–liquid flow in vertical tubes, AIChE J. 26, 345–354. [CrossRef] [Google Scholar]
  • Spedding P.L., Nguyen V.T. (1980) Regime maps for air–water two-phase flow, Chem. Eng. Sci. 35, 779–793. [CrossRef] [Google Scholar]
  • Barnea D., Shoham O., Taitel Y. (1982) Flow pattern transition for vertical downward two phase flow, Chem. Eng. Sci. 37, 741–744. [CrossRef] [Google Scholar]
  • Spisak W. (1986) Two-phase flow of gas-highly viscous liquid, PhD Thesis, Wroclaw Technical University, Poland. [Google Scholar]
  • Ulbrich R. (1989) Two-phase gas–liquid flow identification, Studies and Monographs 32, WSI Opole. [Google Scholar]
  • Dziubinski M., Fidos H., Sosno M. (2004) The flow pattern map of a two-phase non-Newtonian liquid-gas flow in the vertical pipe, Int. J. Multiph. Flow 30, 6, 551–563. doi: 10.1016/j. ijmultiphaseflow.2004.04.005. [CrossRef] [Google Scholar]
  • Baker O. (1954) Design of Pipe Lines for Simultaneous Flow of Oil and Gas, Oil Gas J. 26, July. [Google Scholar]
  • Hashizume K. (1983) Flow Pattern and Void Fraction of Refrigerant Two-Phase Flow in a Horizontal Pipe, Bull. JSME 26, 219, 1597–1602. [CrossRef] [Google Scholar]
  • Steiner D. (1993) in Heat Transfer to Boiling Saturated Liquids, VDI-Warmeatlas (VDI Heat Atlas), Verein Deutscher Ingenieure (VDI), Gessellschaft Verfahrenstechnik und Chemieingenieurwesen (GCV), (ed) Fullarton J.W., trans., Dusseldorf. [Google Scholar]
  • Thome J.R., El Hajal J. (2003) Two-phase flow pattern map for evaporation in horizontal tubes: Latest version, Heat Trans. Eng. 24, 6, 3–10. doi: 10.1080/714044410. [CrossRef] [Google Scholar]
  • Magrini K.L. (2009) Liquid entrainment in annular gas-liquid flow in inclined pipes, Master’s Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Mukherjee H. (1979) An experimental study of inclined two-phase flow, PhD Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Wu B., Firouzi M., Mitchell T., Rufford T.E., Leonardi C., Towler B. (2017) A critical review of flow maps for gas-liquid flows in vertical pipes and annuli, Chem. Eng. J. 326, 350–377. doi: 10.1016/jxej.2017.05.135. [CrossRef] [Google Scholar]
  • Bendiksen K.H. (1991) The dynamic two-fluid model OLGA: Theory and application, Soc. Pet. Eng. 6, 2, 171–180. doi: 10.2118/19451-PA.SPE-19451-PA. [Google Scholar]
  • Larsen M., Hustvedt E., Hedne P., Straume T. (1997) PeTra: A novel computer code for simulation of slug flow, in: SPE Annual Technical Conference and Exhibition, 5–8 October, San Antonio, Texas. doi: 10.2118/38841-MS. [Google Scholar]
  • Belt R., Duret E., Larrey D., Djoric B., Kalali S. (2011) Comparison of commercial multiphase flow simulators with experimental and field databases, in: 15th International Conference on Multiphase Production Technology, Society of Petroleum Engineers, Cannes, France. [Google Scholar]
  • Smith I.E., Krampa F.N., Fossen M., Brekken C., Unander T.E. (2011) Investigation of horizontal two-phase gas-liquid pipe flow using high viscosity oil: Comparison with experiments using low viscosity oil and simulations, in: 15th International Conference on Multiphase Production Technology, Society of Petroleum Engineers, Cannes, France. [Google Scholar]
  • Johnson G.W., Kjeldby T.B., Nydal O.J. (2011) A Comparison of slug and wave characteristics in high pressure flow with multiphase models, in: 15th International Conference on Multiphase Production Technology, Society of Petroleum Engineers, Cannes, France. [Google Scholar]
  • Archibong-Eso A., Yan W., Baba Y., Kanisho S., Yeung H. (2015) Viscous liquid-gas flow in horizontal pipelines: Experiments and multiphase flow simulator assessment, in: 17th International Conference on Multiphase Production Technology, Society of Petroleum Engineers, Cannes, France. [Google Scholar]
  • Choi J., Pereyra E., Sarica C., Lee H., Jang I.L., Kang J. (2013) Development of a fast transient simulator for gas-liquid two- phase flow in pipes, J. Pet. Sci. Eng. 102, 27–35. doi: 10.1016/j.petrol.2013.01.006. [CrossRef] [Google Scholar]
  • Ali S.F. (2009) Two phase flow in large diameter vertical riser, PhD Thesis, School of Engineering, Cranfield University. [Google Scholar]
  • Canière H., T’Joen C., De Paepe M. (2008) Towards objective flow pattern mapping with the k-means clustering algorithm, in: Proceedings of the Sixth International Conference on Heat Transfer, Fluid Mechanics & Thermodynamics – HEFAT 2008, 30 June – 2 July 2008, Pretoria, South Africa. [Google Scholar]
  • Niño V.G. (2002) Characterization of two-phase flow in microchannels, PhD Thesis, Urbana and Champaign, Champaign, USA. [Google Scholar]
  • Jassim E.W., Newell T.A. (2006) Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping, Int. J. Heat Mass Trans. 49, 15, 2446–2457. doi: 10.1016/j.ijheatmasstransfer.2006.01.034. [CrossRef] [Google Scholar]
  • Jassim E.W., Newell T.A., Chato J.C. (2007) Probabilistic determination of two-phase flow regimes in horizontal tubes utilizing an automated image recognition technique, Exper. Fluids 42, 4, 563–573. doi: 10.1007/s00348-007-0264-8. [CrossRef] [Google Scholar]
  • Canière H., Bauwens B., T’Joen C., De Paepe M. (2009) Probabilistic mapping of adiabatic horizontal two-phase flow by capacitance signal feature clustering, Int. J. Multiph. Flow 35, 7, 650–660. doi: 10.1016/j.ijmultiphaseflow.2009.03.006. [CrossRef] [Google Scholar]
  • Canière H., Bauwens B., T’Joen C., De Paepe M. (2010) Mapping of horizontal refrigerant two-phase flow patterns based on clustering of capacitive sensor signals, Int. J. Heat Mass Trans. 53, 23, 5298–5307. doi: 10.1016/j.ijheatmasstransfer.2010.07.027. [CrossRef] [Google Scholar]
  • França F., Lahey R.T. (1992) The use of drift-flux techniques for the analysis of horizontal two-phase flows, Int. J. Multiph. Flow 18, 6, 787–801. doi: 10.1016/0301-9322(92)90059-P. [CrossRef] [Google Scholar]
  • Zhang H.-Q., Wang Q., Sarica C., Brill J.P. (2003) Unified model for gas-liquid pipe flow via slug dynamics – Part 1: Model development, J. Energy Res. Technol. 125, 4, 266–273. doi: 10.1115/1.1615246. [CrossRef] [Google Scholar]
  • Fan Y. (2005) An Investigation of low liquid loading gas-liquid stratified flow in near-horizontal pipes, PhD Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Meng W. (2000) Low liquid loading gas-liquid two-phase flow in near horizontal pipes, PhD Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Thome J.R. (2004) Void fractions in two-phase flows, chapter 17, Wolverine Tube Inc, Alabama, USA, 1–33. doi: 10.1002/ 0471465186.ch11. [Google Scholar]
  • Inoue E.H., Carvalho R., Estevam V., Bannwart A.C., Frattini M., Fileti A. (2013) Development of a neural network for the identification of multiphase flow patterns, in: Proceedings of the IASTED International Conference, Marina del Rey, USA. [Google Scholar]
  • Carey V.P. (1993) Two-phase flow in small-scale ribbed and finned passages for compact evaporators and condensers, Nucl. Eng. Des. 141, 1, 249–268. doi: 10.1016/0029-5493(93)90105-I. [CrossRef] [Google Scholar]
  • Falcone G., Hewitt G.F., Alimonti C. (2009) Multiphase Flow metering, volume 54 of developments in petroleum science, Elsevier, Amsterdam, The Netherlands. doi: 10.1016/S0376-7361(09)05413-2. [Google Scholar]
  • Kouba G. (1986) Horizontal slug flow modelling and metering, PhD Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Thomas J.E. (2004) Fundamentos de engenharia de petróleo, Interciência, Rio de Janeiro, Brazil, ISBN 9788571930995. [Google Scholar]
  • Omebere-Iyari N.K., Azzopardi B.J. (2007) A study of flow patterns for gas/liquid flow in small diameter tubes, Chem. Eng. Res. Des. 85, 2, 180–192. doi: 10.1205/cherd05059. [CrossRef] [Google Scholar]
  • Rosa E.S., Salgado R.M., Ohishi T., Mastelari N. (2010) Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows, Int. J. Multiph. Flow 36, 9, 738–754. doi: 10.1016/j.ijmultiphaseflow.2010.05.001. [CrossRef] [Google Scholar]
  • Abduvayt P., Arihara N., Manabe R., Ikeda K. (2003) Experimental and modeling studies for gas-liquid two-phase flow at high pressure conditions, J. Jpn. Pet. Inst. 46, 2, 111–125. doi: 10.1627/jpi.46.111. [CrossRef] [Google Scholar]
  • Badie S., Hale C.P., Lawrence C.J., Hewitt G.F. (2000) Pressure gradient and holdup in horizontal two-phase gas-liquid flows with low liquid loading, Int. J. Multiph. Flow 26, 9, 1525–1543. doi: 10.1016/S0301-9322(99)00102-0. [CrossRef] [Google Scholar]
  • Beggs H.D. (1972) An experimental study of two-phase flow in inclined pipes, PhD Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Carvalho R.D.M., Venturini O.J., Tanahashi E.I., Neves F., Franga F.A. (2009) Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows, Exper. Therm. Fluid Sci. 33, 7, 1065–1086. doi: 10.1016/j.expthermflusci.2009.06.004. [CrossRef] [Google Scholar]
  • Felizola H. (1992) Slug flow in extended research directional wells, Master’s Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Gokcal B. (2008) An experimental and theoretical investigation of slug flow for high oil viscosity in horizontal pipes, PhD Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Majumder S.K., Ghosh S., Mitra A.K., Kundu G. (2010) Gas- Newtonian and gas-non-Newtonian slug flow in vertical pipe, Part I: Gas holdup characteristics, Int. J. Chem. React. Eng. 8, 1, 1–23, Article A117. [Google Scholar]
  • Manabe R., Zhang H.-Q., Delle-Case E., Brill J. (2001) Crude oil-natural gas two-phase flow pattern transition boundaries at high pressure conditions, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, New Orleans, Louisiana. [Google Scholar]
  • Roumazeilles R. (1994) An experimental study of downward slug flow in inclined pipes, Master’s Thesis, The University of Tulsa, Tulsa, USA. [Google Scholar]
  • Schmidt J., Giesbrecht H., van der Geld C.W.M. (2008) Phase and velocity distributions in vertically upward high-viscosity two-phase flow, Int. J. Multiph. Flow 34, 4, 363–374. doi: 10.1016/j.ijmultiphaseflow.2007.10.013. [CrossRef] [Google Scholar]
  • Tanahashi E.I., Abud-Jr J.R., Carvalho R.D., Venturini F., Neves-Jr O.J., Franga F.A. (2009) Development of an ultrasonic apparatus for the study of the structure of air-water bubbly flows and the determination of the void fraction, in: Proceedings of the 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, June 28–July 03, Krakow. [Google Scholar]
  • Wilkens R.J. (1997) Prediction of the flow regime transitions in high pressure, large diameter, inclined multiphase pipelines, PhD Thesis, Ohio University. [Google Scholar]
  • Kawahara A., Chung P.M.-Y., Kawaji M. (2002) Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel, Int. J. Multiph. Flow 28, 9, 1411–1435. doi: 10.1016/S0301-9322(02)00037-X. [CrossRef] [Google Scholar]
  • Triplett K.A., Ghiaasiaan S.M., Abdel-Khalik S.I., LeMouel A., McCord B.N. (1999) Gas-liquid two- phase flow in microchannels: Part II: Void fraction and pressure drop, Int. J. Multiph. Flow 25, 3, 395–410. doi: 10.1016/S0301-9322(98)00055-X. [CrossRef] [Google Scholar]
  • Tarca L.A., Grandjean B.P.A., Larachi F. (2004) Designing supervised classifiers for multiphase flow data classification, Chem. Eng. Sci. 59, 16, 3303–3313. doi: 10.1016Zj.ces.2004.05.005. [CrossRef] [Google Scholar]
  • Zhang L., Wang H. (2010) Identification of oil-gas two-phase flow pattern based on SVM and electrical capacitance tomography technique, Flow Meas. Instrum. 21, 1, 20–24. doi: 10.1016/j.flowmeasinst.2009.08.006. [CrossRef] [Google Scholar]
  • Youn E., Koenig L., Jeong M.K., Baek S.H. (2010) Support vector-based feature selection using Fisher’s linear discriminant and support vector machine, Expert Syst. Appl. 37, 9, 6148–6156. doi: 10.1016/j.eswa.2010.02.113. [CrossRef] [Google Scholar]
  • Sigut M., Alayón S., Hernández E. (2014) Applying pattern classification techniques to the early detection of fuel leaks in petrol stations, J. Clean. Prod. 80, 262–270. doi: 10.1016/j. jclepro.2014.05.070. [CrossRef] [Google Scholar]
  • Duda R.O., Hart P.E., Stork D.G. (2012) Pattern classification, Wiley, New York, USA. ISBN 9781118586006. [Google Scholar]
  • Hsu C.-W., Chang C.-C., Lin C.-J. (2003) A practical guide to support vector classification, National Taiwan University, Taipei, Taiwan. [Google Scholar]
  • Schlumberger (2013) OLGA dynamic multiphase Flow simulator. User Manual, Version 7.3.3. Technical Report, Schlumberger Limited. [Google Scholar]
  • Pereyra E., Torres C., Mohan R., Gomez L., Kouba G., Shoham O. (2012) A methodology and database to quantify the confidence level of methods for gas-liquid two-phase flow pattern prediction, Chem. Eng. Res. Des. 90, 4, 507–513. doi: 10.1016/j.cherd.2011.08.009. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.