- Ahmadi R., Aminshahidy B., Shahrabi J. (2017a) Well-testing model identification using time-series shapelets, J. Pet. Sci. Eng. 149, 292–305. doi: 10.1016/j.petrol.2016.09.044 . [Google Scholar]
- Ahmadi R., Shahrabi J., Aminshahidy B. (2017b) Automatic well-testing model diagnosis and parameters estimation using artificial neural networks and design of experiments, J. Petrol. Explor. Prod. Technol. 7, 759–783. doi: 10.1007/s13202-016-0293-z . [CrossRef] [Google Scholar]
- Akaike H. (1974) A new look at the statistical model identification, IEEE Trans. Automat. Contr. AC 19, 716–723. [CrossRef] [Google Scholar]
- Karatzoglou A., Smola A., Hornik K., Zeileis A. (2004) kernlab – An S4 Package for Kernel Methods in R, J. Stat. Softw. 69, 721–729. doi: 10.18637/jss.v011.i09 . [Google Scholar]
- Bengtsson H. (2016) R.matlab: Read and Write MAT files and call MATLAB from within R. R package version 3.6.1. https://CRAN.R-project.org/package=R.matlab. Accessed 31 May 2018. [Google Scholar]
- Ben-Hur A., Weston J. (2010) A user’s guide to support vector machines, in: O. Carugo, F. Eisenhaber (eds), Data Mining Techniques for the Life Sciences. Methods in Molecular Biology (Methods and Protocols), Humana Press, Vol. 609. doi: 10.1007/978-1-60327-241-4_13 . [Google Scholar]
- Bergmeir C., Benitez J.M. (2012) Neural networks in R using the Stuttgart neural network simulator: RSNNS, J. Stat. Softw. 46, 1–26. doi: 10.18637/jss.v046.i07 . [Google Scholar]
- Breiman L. (2001) Random forests, Mach. Learn. 45, 5–32. doi: 10.1023/A:1010933404324 . [Google Scholar]
- Breiman L., Friedman J.H., Olshen R.A., Stone C.J. (1984) Classification and regression trees, Chapman & Hall/CRC, United States. [Google Scholar]
- Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. (2002) SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16, 321–357. doi: 10.1613/jair.953 . [Google Scholar]
- Clark C.E., Veil J.A. (2009) Produced water volumes and management practices in the United States, Argonne Natl. Lab. Rep., United States, pp. 1–64. doi: 10.2172/1007397 . [Google Scholar]
- Cohen J. (1960) A coefficient of agreement for nominal scales, Educ. Psychol. Meas. 20, 37–46. [Google Scholar]
- Ershaghi I., Omorigie O. (1978) A method for extrapolation of cut vs recovery curves, Soc. Pet. Eng. 30, 203–204. doi: 10.2118/6977-PA . [Google Scholar]
- Hamilton D.C., Watts D.G. (1978) Interpreting partial autocorrelation functions of seasonal time series models, Biometrika 65, 135–140. doi: 10.2307/2335288 . [Google Scholar]
- Hamilton J. (1994) Time series analysis, Princeton University Press, Princeton. [Google Scholar]
- Hannan E.J., Quinn B.G. (1979) The determination of the order of an autoregression, J. Royal Stat. Soc. B41, 190–195. [Google Scholar]
- Hothorn T., Hornik K., Achim Z. (2006) Unbiased recursive partitioning: a conditional inference framework, J. Comput. Graph. Stat. 15, 651–674. doi: 10.1198/106186006X133933 . [Google Scholar]
- Kohavi R. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence 2, Morgan Kaufmann Publishers Inc, San Francisco, pp. 1137–1143. [Google Scholar]
- Kuhn M., Wing J., Weston S., Williams A., Keefer C., Engelhardt A., Cooper T., Mayer Z., Kenkel B., The R Core Team, Benesty M., Lescarbeau R., Ziem A., Scrucca L., Tang Y., Candan C., Hunt T. (2016) Caret: classification and regression training, R package version 6.0-73. https://CRAN.R-project.org/package=caret. Accessed 31 May 2018. [Google Scholar]
- Landis J.R., Koch G.G. (1977) The measurement of observer agreement for categorical data, Biometrics 33, 159–174. doi: 10.2307/2529310 . [Google Scholar]
- Lawal K.A., Utin E., Langaas K. (2007) A didactic analysis of water cut trend during exponential oil-decline, Nigeria Annual International Conference and Exhibition, 6–8 August, Abuja, Nigeria, Society of Petroleum Engineers. doi: 10.2118/111920-MS . [Google Scholar]
- Li K., Ren X., Li L., Fan X. (2011) A new model for predicting water cut in oil reservoirs, SPE EUROPEC/EAGE Annual Conference and Exhibition, 23–26 May, Vienna, Austria, Society of Petroleum Engineers. doi: 10.2118/143481-MS . [Google Scholar]
- Li X., Li H. (2013) A new method of identification of complex lithologies and reservoirs: task-driven data mining, J. Pet. Sci. Eng. 109, 241–249. doi: 10.1016/j.petrol.2013.08.049 . [Google Scholar]
- Liaw A., Wiener M. (2002) Classification and regression by random forest, R News 2, 18–22. [Google Scholar]
- Liu P., Mu Z., Wang W., Liu P., Hao M., Liu J. (2017) A new combined solution model to predict water cut in water flooding hydrocarbon reservoirs, Int. J. Hydrogen Energy 42, 18685–18690. doi: 10.1016/j.ijhydene.2017.04.166 . [Google Scholar]
- Lo K.K., Warner H.R., Johnson J.B. (1990) A study of the post-breakthrough characteristics of waterflood, SPE California Regional Meeting, 4–6 April, Ventura, California, Society of Petroleum Engineers. doi: 10.2118/20064-MS . [Google Scholar]
- Lütkepohl H. (2006) New introduction to multiple time series analysis, Springer, New York. [Google Scholar]
- McCallum A., Nigam K. (1998) A comparison of event models for Naive Bayes text classification. Proc AAAI/ICML-98 Workshop on Learning for Text Categorization, AAAI Press, Madison, WI, pp. 41–48. [Google Scholar]
- McLeod A.I., Li W.K. (1983) Diagnostic checking ARMA time series models using squared-residual autocorrelations, J. Time Ser. Anal. 4, 269–273. doi: 10.1111/j.1467-9892.1983.tb00373.x . [Google Scholar]
- McLeod A.I., Zhang Y. (2006) Partial autocorrelation parameterization for subset autoregression, J. Time Ser. Anal. 27, 599–612. doi: 10.1111/j.1467-9892.2006.00481.x . [Google Scholar]
- Mohan S., Ramsundram N. (2016) Predictive temporal data-mining approach for evolving knowledge based reservoir operation rules, Water Resour. Manage. 30, 3315–3330. doi: 10.1007/s11269-016-1351-5 . [CrossRef] [Google Scholar]
- Mostafizur M.R., Davis D.N. (2013) Addressing the class imbalance problem in medical datasets, Int. J. Mach. Learn. Comput. 3, 224–228. doi: 10.7763/IJMLC.2013.V3.307 . [Google Scholar]
- Nasiri M., Jafari I., Parniankhoy B. (2017) Oil and gas produced water management: a review of treatment technologies, challenges, and opportunities, Chem. Eng. Commun. 204, 990–1005. doi: 10.1080/00986445.2017.1330747 . [Google Scholar]
- Nourani V., Sattari M.T., Molajou A. (2017) Threshold-based hybrid data mining method for long-term maximum precipitation forecasting, Water Resour. Manage. 31, 2645–2658. doi: 10.1007/s11269-017-1649-y . [CrossRef] [Google Scholar]
- Pandit S.M., Wu S.M. (1983) Time series and system analysis with applications, John Wiley & Sons, New York, United States. [Google Scholar]
- Petrowiki (2018) Produced oilfield water. https://petrowiki.org/Produced_oilfield_water. Accessed 22 Jan 2019. [Google Scholar]
- Pfaff B. (2008) VAR, SVAR and SVEC Models: Implementation Within R Package vars, J. Stat. Softw. 27, 1–32. http://hdl.handle.net/10.18637/jss.v027.i04 . [Google Scholar]
- Quinn B. (1980) Order determination for a multivariate autoregression, J. Royal Stat. Soc. B42, 182–185. [Google Scholar]
- Raschka S. (2014) Linear Discriminant Anaysis – Bit by Bit. http://sebastianraschka.com/Articles/2014_python_lda.html#principal-component-analysis-vs-linear-discriminant-analysis. Accessed 31 May 2017. [Google Scholar]
- Rosenblatt F.X. (1961) Principles of neurodynamics: perceptrons and the theory of brain mechanisms, Spartan Books, Washington. [CrossRef] [Google Scholar]
- Runkel P. (2016) What are T values and P values in statistics? The Minitab blog, Minitab Blog Editor, United States http://blog.minitab.com/blog/statistics-and-quality-data-analysis/what-are-t-values-and-p-values-in-statistics. Accessed 31 May 2018. [Google Scholar]
- Schwarz G. (1978) Estimating the dimension of a model, Ann. Stat. 6, 461–464. doi: 10.1214/aos/1176344136 . [Google Scholar]
- Seo S. (2006) A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets, Dissertation, University of Pittsburgh, Pennsylvania. [Google Scholar]
- Sitorus J.H.H., Sofyan A., Abdulfatah M.Y. (2006) Developing a fractional flow curve from historic production to predict performance of new horizontal wells, Bekasap Field, Indonesia, SPE Asia Pacific Oil & Gas Conference and Exhibition, 11–13 September, Adelaide, Australia, Society of Petroleum Engineers. doi: 10.2118/101144-MS . [Google Scholar]
- SLB (2018) Water management for oil and gas. https://www.slb.com/services/additional/water/oil.aspx. Accessed 30 May 2018. [Google Scholar]
- Sokolova M., Lapalme G. (2009) A systematic analysis of performance measures for classification tasks, Inf. Process. Manage. 45, 427–437. doi: 10.1016/j.ipm.2009.03.002 . [Google Scholar]
- Solomatine D., See L.M., Abraart R.J. (2008) Data-driven modeling: Concepts, approaches and experiences, in: Abrahart R.J., See L.M., Solomatine D.P. (eds), Practical Hydroinformatics. Water Science and Technology Library 68. Springer, Berlin, Heidelberg. [Google Scholar]
- Vapnik V. (1995) The nature of statistical learning theory, Springer, New York. [CrossRef] [Google Scholar]
- Wachowicz M. (2002) Uncovering spatio-temporal patterns in environmental data, Water Resour. Manage. 16, 469–487. doi: 10.1023/A:1022259531710 . [CrossRef] [Google Scholar]
- Weihs C., Ligges U., Luebke K., Raabe N. (2005) klaR analyzing German business cycles, in: Baier D., Decker R., Schmidt-Thieme L. (eds), Data analysis and decision support, Springer-Verlag, Berlin, pp. 335–343. [CrossRef] [Google Scholar]
- Wu X., Kumar V., Quinlan J.R., Ghosh J., Yang Q., Motoda H., McLachlan G.J., Ng A., Liu B., Yu P.S., Zhou Z.H., Steinbach M., Hand D.J., Steinberg D. (2008) Top 10 algorithms in data mining, Knowl. Inf. Syst. 14, 1–37. doi: 10.1007/s10115-007-0114-2 . [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
|
|
---|---|---|
Article Number | 68 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.2516/ogst/2019040 | |
Published online | 09 September 2019 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.