Regular Article
Probabilistic approach of a flow pattern map for horizontal, vertical, and inclined pipes
1
Department of Chemical Engineering, Universidad de los Andes, Cra 1E # 19A -40, Bogotá, Colombia
2
Université de Nantes, GeM, Institute for Research in Civil and Mechanical Engineering, CNRS UMR 6183, BP 92208 – 44322 Nantes Cedex 3, France
3
McDougall School of Petroleum Engineering, The University of Tulsa, 800 South Tucker Drive, NCDB 105D, Tulsa, 74104 OK, USA
* Corresponding author: r.amaya29@uniandes.edu.co
Received:
26
October
2018
Accepted:
14
May
2019
A way to predict two-phase liquid-gas flow patterns is presented for horizontal, vertical and inclined pipes. A set of experimental data (7702 points, distributed among 22 authors) and a set of synthetic data generated using OLGA Multiphase Toolkit v.7.3.3 (59 674 points) were gathered. A filtering process based on the experimental void fraction was proposed. Moreover, a classification of the pattern flows based on a supervised classification and a probabilistic flow pattern map is proposed based on a Bayesian approach using four pattern flows: Segregated Flow, Annular Flow, Intermittent Flow, and Bubble Flow. A new visualization technique for flow pattern maps is proposed to understand the transition zones among flow patterns and provide further information than the flow pattern map boundaries reported in the literature. Following the methodology proposed in this approach, probabilistic flow pattern maps are obtained for oil–water pipes. These maps were determined using an experimental dataset of 11 071 records distributed among 53 authors and a numerical filter with the water cut reported by OLGA Multiphase Toolkit v7.3.3.
© R. Amaya-Gómez et al., published by IFP Energies nouvelles, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.