- Aliyev E., Durlofsky L.J. (2015) Multilevel field development optimization under uncertainty using a sequence of upscaled models, Math. Geosci. 49, 3, 1–33. https://doi.org/10.1007/s11004-016-9643-0. [Google Scholar]
- Avansi G., Rios V., Schiozer D.J. (2019) Numerical tuning in reservoir simulation: It is worth the effort in practical petroleum applications, Braz. Soc. Mech. Sci. Eng. 41, 59. https://doi.org/10.1007/s40430-018-1559-9. [CrossRef] [Google Scholar]
- Avansi G.D., Schiozer D.J. (2015a) A new approach to history matching using reservoir characterization and reservoir simulation integrated studies, in: Offshore Technology Conference, 4–7 May, Houston, Texas. https://doi.org/10.4043/26038-MS. [Google Scholar]
- Avansi G.D., Schiozer D.J. (2015b) UNISIM-I: Synthetic model for reservoir development and management applications, Int. J. Model. Sim. Petrol. Ind. 9, 1, 21–30. [Google Scholar]
- Bertolini A.C., Maschio C., Schiozer D.J. (2015) A methodology to evaluate and reduce reservoir uncertainties using multivariate distribution, J. Petrol. Sci. Eng. 128, 1–14. https://doi.org/10.1016/j.petrol.2015.02.003. [CrossRef] [Google Scholar]
- Botechia V.E., Gaspar A.T.F.S., Avansi G.D., Davolio A., Schiozer D.J. (2018a) Investigation of production forecast biases of simulation models in a benchmark case, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 23. https://doi.org/10.2516/ogst/2018014. [CrossRef] [Google Scholar]
- Botechia V.E., Dos Santos D.R., Barreto C.E.A., Gaspar A.T.F.S., Santos S.M.G., Schiozer D.J. (2018b) Estimating the chance of success of information acquisition for the Norne benchmark case, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 54. https://doi.org/10.2516/ogst/2018054. [CrossRef] [Google Scholar]
- Chen Y., Oliver D.S., Zhang D. (2009) Efficient ensemble-based closed-loop production optimization, SPE J. 14, 4, 634–645. https://doi.org/10.2118/112873-PA. [CrossRef] [Google Scholar]
- Correia M.G., Maschio C., Schiozer D.J. (2015) Integration of multiscale carbonate reservoir heterogeneities in reservoir simulation, J. Petrol. Sci. Eng. 131, 34–50. https://doi.org/10.1016/j.petrol.2015.04.018. [CrossRef] [Google Scholar]
- Correia M.G., Filho J.H., Schiozer D.J. (2018a) An integrated workflow to combine static and dynamic uncertainties in reservoir simulation models, in: 80th EAGE Conference and Exhibition 2018, 11–14 June, Copenhagen, Denmark. https://doi.org/10.3997/2214-4609.201800807. [Google Scholar]
- Correia M.G., Maschio C., Schiozer D.J. (2018b) Flow simulation using local grid refinements to model laminated reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 5. https://doi.org/10.2516/ogst/2017043. [CrossRef] [Google Scholar]
- Costa L.A.N., Maschio C., Schiozer D.J. (2018) A new methodology to reduce uncertainty of global attributes in naturally fractured reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 41. https://doi.org/10.2516/ogst/2018038. [CrossRef] [Google Scholar]
- Costa A.P., Schiozer D.J., Moczydlower P., Bedrikovetsky P. (2008) Use of representative models to improve the decision making process of chemical flooding in a mature field, in: SPE Russian Oil and Gas Technology Conference and Exhibition, 28–30 October, Moscow, Russia. https://doi.org/10.2118/115442-MS. [Google Scholar]
- Davolio A., Schiozer D.J. (2018) Probabilistic seismic history matching using binary images, J. Geophys. Eng. 15, 1, 261–274. https://doi.org/10.1088/1742-2140/aa99f4. [CrossRef] [Google Scholar]
- de Neufville R. (2004) Uncertainty management for engineering systems planning and design, in: Engineering Systems Symposium, 29–31 March, Cambridge, MA. [Google Scholar]
- Douarche F., Da Veiga S., Feraille M., Enchéry G., Touzani S., Barsalou R. (2014) Sensitivity analysis and optimization of surfactant-polymer flooding under uncertainties, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 69, 4, 603–617. https://doi.org/10.2516/ogst/2013166. [Google Scholar]
- Durlofsky L.J. (1997) Use of higher moments for the description of upscaled, process independent relative permeabilities, SPE J. 2, 4, 474–484. https://doi.org/10.2118/37987-PA. [CrossRef] [Google Scholar]
- Durlofsky L.J. (1998) Coarse scale models of two phase flow in heterogeneous reservoirs: Volume averaged equations and their relationship to existing upscaling techniques, Comput. Geosci. 2, 2, 73–92. https://doi.org/10.1023/A:1011593901771. [Google Scholar]
- Feraille M. (2013) An optimization strategy based on the maximization of matching-targets’ probability for unevaluated results, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 68, 3, 545–556. https://doi.org/10.2516/ogst/2012079. [CrossRef] [Google Scholar]
- Feraille M., Marrel A. (2012) Prediction under uncertainty on a mature field, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 67, 2, 193–206. https://doi.org/10.2516/ogst/2011172. [Google Scholar]
- Gaspar A.T.F., Barreto C.E.A., Schiozer D.J. (2016a) Assisted process for design optimization of oil exploitation strategy, J. Pet. Sci. Eng. 146, 473–488. https://doi.org/10.1016/j.petrol.2016.05.042. [Google Scholar]
- Gaspar A.T.F.S., Avansi G.D., Maschio C., Santos A.A.S., Schiozer D.J. (2016b) UNISIM-I-M: Benchmark case proposal for oil reservoir management decision-making, in: SPE Energy Resources Conference, 13–15 June, Port of Spain, Trinidad and Tobago. https://doi.org/10.2118/180848-MS. [Google Scholar]
- Gaspar A.T.F.S., Avansi G.D., Santos A.A., Hohendorff Filho J.C., Schiozer D.J. (2015) UNISIM-I-D: Benchmark studies for oil field development and production strategy selection, Int. J. Model. Sim. Petrol. Ind. 9, 1, 47–55. [Google Scholar]
- Gaspar A.T.F.S., Barreto C.E.A.G., Munhoz Mazo E.O., Schiozer D.J. (2014) Application of assisted optimization to aid oil exploitation strategy selection for offshore fields, in: SPE Latin America and Caribbean Petroleum Engineering Conference, 21–23 May, Maracaibo, Venezuela. https://doi.org/10.2118/169464-MS. [Google Scholar]
- Helton J.C., Davis F.J. (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab. Eng. Syst. Safe 81, 1, 23–69. https://doi.org/10.1016/S0951-8320(03)00058-9. [Google Scholar]
- Imrie C.E., Macrae E.J. (2016) Application of experimental design to estimate hydrocarbons initially in place, Pet. Geosci. 22, 1, 11–19. https://doi.org/10.1144/petgeo2014-071. [CrossRef] [Google Scholar]
- Jansen J.-D., Brouwer D.R., Douma S.G. (2009) Closed-loop reservoir management, in: SPE Reservoir Simulation Symposium, 2–4 February, The Woodlands, Texas. https://doi.org/10.2118/119098-MS. [Google Scholar]
- Jansen J.-D., Brouwer D.R., Nævdal G., van Kruijsdijk C.P.J.W. (2005) Closed-loop reservoir management, First Break 23, 1, 43–48. https://doi.org/10.3997/1365-2397.2005002. [Google Scholar]
- Jiang R., Stern D., Halsey T.C., Manzocchi T. (2016) Scenario discovery workflow for robust petroleum reservoir development under uncertainty, Int. J. Uncertain. Quan. 6, 6, 533–559. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016018932. [CrossRef] [Google Scholar]
- Lodoen O.P., Omre H. (2008) Scale-corrected ensemble Kalman filtering applied to production-history conditioning in reservoir evaluation, SPE J. 13, 2, 177–194. https://doi.org/10.2118/111374-PA. [CrossRef] [Google Scholar]
- Mahjour S.K., Correia M.G., dos Santos A.A.D.S., Schiozer D.J. (2019) Developing a workflow to represent fractured carbonate reservoirs for simulation models under uncertainties based on flow unit concept, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 15. https://doi.org/10.2516/ogst/2018096. [Google Scholar]
- Maschio C., Schiozer D.J. (2008) A new methodology for assisted history matching using independent objective functions, Petrol. Sci. Technol. 26, 9, 1047–1062. https://doi.org/10.1080/10916460701208389. [CrossRef] [Google Scholar]
- Maschio C., Schiozer D.J. (2015) A new optimization framework using genetic algorithm and artificial neural network to reduce uncertainties in petroleum reservoir models, Eng. Optimiz. 47, 1, 72–86. https://doi.org/10.1080/0305215X.2013.868453. [CrossRef] [Google Scholar]
- Maschio C., Schiozer D.J. (2016) Probabilistic history matching using discrete latin hypercube sampling and nonparametric density estimation, J. Pet. Sci. Eng. 147, 98–115. https://doi.org/10.1016/j.petrol.2016.05.011. [Google Scholar]
- Meira L.A., Coelho G.P., Santos A.A.S., Schiozer D.J. (2016) Selection of representative models for decision analysis under uncertainty, Comput. Geosci. 88, 67–82. https://doi.org/10.1016/j.cageo.2015.11.012. [Google Scholar]
- Meira L.A., Coelho G.P., Silva C.G., Schiozer D.J., Santos A.A.S. (2017) RMFinder 2.0: An improved interactive multi-criteria scenario reduction methodology, in: SPE Latin America and Caribbean Petroleum Engineering Conference, 17–19 May, Buenos Aires, Argentina. https://doi.org/10.2118/185502-MS. [Google Scholar]
- Mishra S. (1998) Alternatives to Monte-Carlo simulation for probabilistic reserves estimation and production forecasting, in: SPE Annual Technical Conference and Exhibition, 27–30 September, New Orleans, Louisiana. https://doi.org/10.2118/49313-MS. [Google Scholar]
- Nævdal G., Brouwer D.R., Jansen J.-D. (2006) Waterflooding using closed-loop control, Comput. Geosci. 10, 1, 37–60. https://doi.org/10.1007/s10596-005-9010-6. [Google Scholar]
- Oliveira G.S., Maschio C., Schiozer D.J. (2018) A new approach with multiple realizations for image perturbation using co-simulation and probability perturbation method, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 68. https://doi.org/10.2516/ogst/2018065. [CrossRef] [Google Scholar]
- Osterloh W.T. (2008) Use of multiple-response optimization to assist reservoir simulation probabilistic forecasting and history matching, in: SPE Annual Technical Conference and Exhibition, 24 September, Denver, Colorado. https://doi.org/10.2118/116196-MS. [Google Scholar]
- Panjalizadeh H., Alizadeh N., Mashhadi H. (2014) A workflow for risk analysis and optimization of steam flooding scenario using static and dynamic proxy models, J. Petrol. Sci. Eng. 121, 78–86. https://doi.org/10.1016/j.petrol.2014.06.010. [CrossRef] [Google Scholar]
- Preux C. (2016) About the use of quality indicators to reduce information loss when performing upscaling, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 71, 7. https://doi.org/10.2516/ogst/2014023. [Google Scholar]
- Ravagnani A.T.F.S.G., Mazo E.O.M., Schiozer D.J. (2011) A case study of the structure of the process for production strategy selection, Int. J. Model. Sim. Petrol. Ind. 4, 1, 9–15. [Google Scholar]
- Risso F., Risso V., Schiozer D.J. (2011) Risk analysis of petroleum fields using latin hypercube, Monte Carol [sic] and derivative tree techniques, J. Petrol. Gas. Explor. Res. 1, 1, 014–021. [Google Scholar]
- Santos S.M.G., Botechia V.E., Schiozer D.J., Gaspar A.T.F.S. (2017a) Expected value, downside risk and upside potential as decision criteria in production strategy selection for petroleum field development, J. Pet. Sci. Eng. 157, 81–93. https://doi.org/10.1016/j.petrol.2017.07.002. [Google Scholar]
- Santos S.M.G., Gaspar A.T.F.S., Schiozer D.J. (2017b) Value of information in reservoir development projects: Technical indicators to prioritize uncertainties and information sources, J. Pet. Sci. Eng. 157, 1179–1197. https://doi.org/10.1016/j.petrol.2017.08.028. [Google Scholar]
- Santos S.M.G., Gaspar A.T.F.S., Schiozer D.J. (2017c) Risk management in petroleum development projects: Technical and economic indicators to define a robust production strategy, J. Pet. Sci. Eng. 151, 116–127. https://doi.org/10.1016/j.petrol.2017.01.035. [Google Scholar]
- Santos S.M.G., Gaspar A.T.F.S., Schiozer D.J. (2018a) Managing reservoir uncertainty in petroleum field development: Defining a flexible production strategy from a set of rigid candidate strategies, J. Pet. Sci. Eng. 171, 516–528. https://doi.org/10.1016/j.petrol.2018.07.048. [Google Scholar]
- Santos S.M.G., Gaspar A.T.F.S., Schiozer D.J. (2018b) Comparison of risk analysis methodologies in a geostatistical context: Monte Carlo with joint proxy models and discretized latin hypercube, Int. J. Uncertain. Quan. 8, 1, 23–41. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018019782. [CrossRef] [Google Scholar]
- Scheidt C., Zabalza-Mezghani I., Feraille M., Collombier D. (2007) Toward a reliable quantification of uncertainty on production forecasts: Adaptive experimental designs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 62, 2, 207–224. https://doi.org/10.2516/ogst:2007018. [CrossRef] [Google Scholar]
- Schiozer D.J., Avansi G.D., Santos A.A.S. (2017) A new methodology for risk quantification combining geostatistical realizations and discretized latin hypercube, J. Braz. Soc. Mech. Sci. 39, 2, 575–587. https://doi.org/10.1007/s40430-016-0576-9. [Google Scholar]
- Schiozer D.J., Ligero E.L., Suslick S.B., Costa A.P.A., Santos J.A.M. (2004) Use of representative models in the integration of risk analysis and production strategy definition, J. Pet. Sci. Eng. 44, 1–2, 131–141. https://doi.org/10.1016/j.petrol.2004.02.010. [Google Scholar]
- Schiozer D.J., Santos A.A.S., Drumond P.S. (2015) Integrated model based decision analysis in twelve steps applied to petroleum fields development and management, in: SPE EUROPEC 2015, 1–4 June, Madrid, Spain. https://doi.org/10.2118/174370-MS. [Google Scholar]
- Shirangi M.G., Durlofsky L.J. (2015) Closed-loop field development optimization under uncertainty, in: SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas. https://doi.org/10.2118/173219-MS. [Google Scholar]
- Shirangi M.G., Durlofsky L.J. (2016) A general method to select representative models for decision making and optimization under uncertainty, Comput. Geosci. 96, 109–123. https://doi.org/10.1016/j.cageo.2016.08.002. [Google Scholar]
- Silva L.O.M., Santos A.A.S., Schiozer D.J. (2016) Otimização da Estratégia de Produção sob Incertezas Geológicas e Econômicas, in: Rio Oil & Gas Expo and Conference, 24–27 October, Rio de Janeiro, Brazil. [Google Scholar]
- Silva M.I.O., dos Santos A.A.S., Schiozer D.J., de Neufville R. (2017) Methodology to estimate the value of flexibility under endogenous and exogenous uncertainties, J. Pet. Sci. Eng. 151, 235–247. https://doi.org/10.1016/j.petrol.2016.12.026. [Google Scholar]
- Soares R.V., Maschio C., Schiozer D.J. (2018) Applying a localization technique to Kalman Gain and assessing the influence on the variability of models in history matching, J. Pet. Sci. Eng. 169, 110–125. https://doi.org/10.1016/j.petrol.2018.05.059. [Google Scholar]
- Subbey S., Christie M., Sambridge M. (2004) Prediction under uncertainty in reservoir modeling, J. Pet. Sci. Eng. 44, 1, 143–153. https://doi.org/10.1016/j.petrol.2004.02.011. [Google Scholar]
- von Hohendorff Filho J.C., Maschio C., Schiozer D.J. (2016) Production strategy optimization based on iterative discrete latin hypercube, J. Braz. Soc. Mech. Sci. 38, 8, 2473–2480. https://doi.org/10.1007/s40430-016-0511-0. [Google Scholar]
- von Hohendorff Filho J.C., Schiozer D.J. (2017) Evaluation of reservoir and production system integration in production strategy selection, in: SPE Reservoir Simulation Conference, 20–22 February, Montgomery, Texas. https://doi.org/10.2118/182624-MS. [Google Scholar]
- von Hohendorff Filho J.C., Schiozer D.J. (2018) Effect of reservoir and production system integration on field production strategy selection, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 44. https://doi.org/10.2516/ogst/2018042. [Google Scholar]
- Touzani S., Busby D. (2014) Screening method using the derivative-based global sensitivity indices with application to reservoir simulator, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 69, 4, 619–632. https://doi.org/10.2516/ogst/2013195. [CrossRef] [Google Scholar]
- Trehan S., Carlberg K.T., Durlofsky L.J. (2017) Error modeling for surrogates of dynamical systems using machine learning, Int. J. Numer. Meth. Eng. 112, 1801–1827. https://doi.org/10.1002/nme.5583. [CrossRef] [Google Scholar]
- van Essen G., Zandvliet M., van den Hof P., Bosgra O., Jansen J.-D. (2009) Robust waterflooding optimization of multiple geological scenarios, SPE J. 14, 1, 24–27. https://doi.org/10.2118/102913-PA. [Google Scholar]
- Wang C., Li G., Reynolds A.C. (2009) Production optimization in closed-loop reservoir management, SPE J. 14, 3, 506–523. https://doi.org/10.2118/109805-PA. [CrossRef] [Google Scholar]
- Wilson K.C., Durlofsky L.J. (2013) Optimization of shale gas field development using direct search techniques and reduced-physics models, J. Petrol. Sci. Eng. 108, 304–315. https://doi.org/10.1016/j.petrol.2013.04.019. [CrossRef] [Google Scholar]
- Yang C., Card C., Nghiem L., Fedutenko E. (2011) Robust optimization of SAGD operations under geological uncertainties, in: SPE Reservoir Simulation Symposium, 21–23 February, The Woodlands, Texas. https://doi.org/10.2118/141676-MS. [Google Scholar]
- Yang C., Nghiem L., Card C., Bremeier M. (2007) Reservoir model uncertainty quantification through computer-assisted history matching, in: SPE Annual Technical Conference and Exhibition, 11–14 November, Anaheim, California. https://doi.org/10.2118/109825-MS. [Google Scholar]
- Yasari E., Pishvaie M.R. (2015) Pareto-based robust optimization of water-flooding using multiple realizations, J. Pet. Sci. Eng. 132, 18–27. https://doi.org/10.1016/j.petrol.2015.04.038. [Google Scholar]
- Zabalza-Mezghani I., Manceau E., Feraille M., Jourdan A. (2004) Uncertainty management: From geological scenarios to production scheme optimization, J. Petrol. Sci. Eng. 44, 1–2, 11–25. https://doi.org/10.1016/j.petrol.2004.02.002. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
|
|
---|---|---|
Article Number | 46 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.2516/ogst/2019019 | |
Published online | 21 May 2019 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.