Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 45
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2019017
Published online 16 May 2019
  • Aggelopoulos C., Klepetsanis P., Theodoropoulou M., Pomoni K., Tsakiroglou C.D. (2005) Large-scale effects on the resistivity index of porous media, J. Contam. Hydrol. 77, 299–323. [CrossRef] [PubMed] [Google Scholar]
  • Aggelopoulos C.A., Tsakiroglou C.D. (2008) The effect of micro-heterogeneity and capillary number on capillary pressure and relative permeability curves of soils, Geoderma 148, 25–34. [CrossRef] [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1995a) Flow regimes and relative permeabilities during steady-state two-phase flow in porous media, J. Fluid Mech. 293, 207–236. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1995b) Generalized relative permeability coefficients during steady-state two-phase flow in porous media and correlation with the flow mechanisms, Transp. Porous Media 20, 135–168. [CrossRef] [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1999) Flow mechanisms, relative permeabilities, and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability, Ind. Eng. Chem. Res. 38, 778–786. [CrossRef] [Google Scholar]
  • Constantinides G.N., Payatakes A.C. (1996) Network simulation of steady-state two-phase flow in consolidated porous media, AIChE J. 42, 369–382. [CrossRef] [PubMed] [Google Scholar]
  • Eftekhari A.A., Farajzadeh R. (2017) Effect of foam on liquid phase mobility in porous media, Scientific Reports 7, 43870. [CrossRef] [PubMed] [Google Scholar]
  • Erpelding M., Sinha S., Tallakstad K.T., Hansen A., Flekkoy E.G., Maloy K.J. (2013) History independence of steady-state in simultaneous two-phase flow through two-dimensional porous media, Phys. Rev. E 88, 053004. [CrossRef] [Google Scholar]
  • Grøva M., Hansen A. (2011) Two-phase flow in porous media: power-law scaling of effective permeability, J. Phys. Conf. Ser. 319, 012009. [CrossRef] [Google Scholar]
  • Gutierrez B., Juarez F., Ornelas L., Zeppieri S., Lopez de Ramos A. (2008) Experimental study of gas-liquid two-phase flow in glass micromodels, Int. J. Thermophys. 29, 2126–2135. [CrossRef] [Google Scholar]
  • Joekar-Niasar V., Hassanizadeh M., Dahle H.K. (2010) Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling, J. Fluid Mech. 655, 38–71. [CrossRef] [Google Scholar]
  • Kamali F., Hussain F. (2017) Field-scale simulation of CO2 enhanced oil recovery and storage through SWAG injection using laboratory estimated relative permeabilities, J. Pet. Sci. Eng. 156, 396–407. [CrossRef] [Google Scholar]
  • Johnson A., Patil S., Dandekar A. (2011) Experimental investigation of gas-water relative permeability for gas-hydrate bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well Alaska North Slope, Marine Petrol. Geol. 28, 419–426. [CrossRef] [Google Scholar]
  • Ramstad T., Hansen A.H. (2006) Cluster evolution in steady-state two-phase flow in porous media, Phys. Rev. E 73, 026306. [CrossRef] [Google Scholar]
  • Ramstad T., Idowu N., Nardi C., Oren P.-E. (2012) Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks, Transp. Porous Media 94, 487–504. [CrossRef] [Google Scholar]
  • Reynolds C.A., Krevor S. (2015) Characterizing flow behavior for gas injection: Relative permeability of CO2-brine and N2-water in heterogeneous rocks, Water Resour. Res. WR018046, 9464–9489. [CrossRef] [Google Scholar]
  • Sherafati M., Jessen K. (2017) Dynamic relative permeability and Simulation of WAG injection processes, Transp. Porous Media 117, 125–147. [CrossRef] [Google Scholar]
  • Sidiq H., Amin B., Kennaird T. (2017) The study of relative permeability and residual gas saturation at high pressures and high temperatures, Adv. Geoenergy Res. 1, 64–68. [Google Scholar]
  • Sinha S., Hansen A. (2012) Effective rheology of immiscible two-phase flow in porous media, Europhys. Lett. 99, 44004. [CrossRef] [Google Scholar]
  • Stewart W.E., Caracotsios M. (2008) Computer-Aided Modeling of Reactive Systems, John Wiley & Sons, Hoboken, New Jersey. [CrossRef] [Google Scholar]
  • Tallakstad K.T., Lovoll G., Knudsen H.A., Ramstad T., Flekkoy E.G., Maloy K.J. (2009a) Steady-state, simultaneous two-phase flow in porous media: an experimental study, Phys. Rev. E 80, 036308. [CrossRef] [Google Scholar]
  • Tallakstad K.T., Knudsen H.A., Ramstad T., Lovoll G., Maloy K.J., Toussaint R., Flekkoy E.G. (2009b) Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502. [CrossRef] [PubMed] [Google Scholar]
  • Terzi K., Bountas I., Aggelopoulos C.A., Tsakiroglou C.D. (2014) Effects of carbon dioxide on the mobilization of metals from aquifers, Environ. Sci. Technol. 148, 4386–4394. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Avraam D.G., Payatakes A.C. (2007) Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks, Adv. Water Res. 30, 1981–1992. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Aggelopoulos C.A., Terzi K., Avraam D.G., Valavanides M. (2015) Steady-state two-phase relative permeability functions of porous media: a revisit, Int. J. Multiphase Flow 73, 34–42. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Theodoropoulou M., Karoutsos V. (2003) Non-equilibrium capillary pressure and relative permeability curves of porous media, AIChE J. 49, 2472–2486. [CrossRef] [Google Scholar]
  • Valavanides M.S., Constantinides G.N., Payatakes A.C. (1998) Mechanistic model of steady-state two-phase flow in porous media based on ganglion dynamics, Transp. Porous Media 30, 267–299. [CrossRef] [Google Scholar]
  • Valavanides M.S. (2012) Steady-state two-phase flow in porous media: Review of progress in the development of the DeProF theory bridging pore to statistical thermodynamics scales, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 787–804. [CrossRef] [Google Scholar]
  • Valavanides M.S., Totaj E., Tsokopoulos M. (2016) Energy efficiency characteristics in steady-state relative permeability diagrams of two-phase flow in porous media, J. Petrol. Sci. Eng. 147, 181–201. [CrossRef] [Google Scholar]
  • Wang Y., Bryan C., Dewers T., Heath J.E., Jove-Colon C. (2013) Ganglion dynamics and its implications to geologic carbon dioxide storage, Environ. Sci. Technol. 47, 219–226. [CrossRef] [PubMed] [Google Scholar]
  • Wu F., Fan Q., Huang D., Ma L., Linag X., Sima L. (2016) Predicting gas-water relative permeability using nuclear magnetic resonance and mercury injection capillary pressure measurements, J. Nat. Gas Sci. Eng. 32, 35–47. [CrossRef] [Google Scholar]
  • Zhang D., Papadikis K., Gu S. (2016) A lattice Boltzmann study on the impact of the geometrical properties of porous media on the steady state relative permeabilities on two-phase immiscible flows, Adv. Water Resour. 95, 61–79. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.