Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 11
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2018084
Published online 14 January 2019
  • Holm L.W., Josendal V.A. (1974) Mechanisms of oil displacement by carbon dioxide, J. Pet. Technol. 26, 12, 1427–1438. [CrossRef] [Google Scholar]
  • Rahimi V., Bidarigh M., Bahrami P. (2017) Experimental study and performance investigation of miscible water-alternating-CO2 flooding for enhancing oil recovery in the Sarvak formation, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 35. [CrossRef] [Google Scholar]
  • Ko S.C.M., Stanton P.M., Stephenson D.J. (1985) Tertiary recovery potential of CO2 flooding in Joffre Viking pool, Alberta, J. Can. Pet. Technol. 24, 1, 36–43. [Google Scholar]
  • Mungan N. (1966) Interfacial effects in immiscible liquid-liquid displacement in porous media, Soc. Pet. Eng. J. 6, 3, 247–253. [CrossRef] [Google Scholar]
  • Sarma H.K. (2003) Can we ignore asphaltene in a gas injection project for light-oils? SPE International Improved Oil Recovery Conference in Asia Pacific, 20–21 October, Kuala Lumpur, Malaysia, Society of Petroleum Engineers. [Google Scholar]
  • Tabzar A., Fathinasab M., Salehi A., Bahrami B., Mohammadi A.H. (2018) Multiphase flow modeling of asphaltene precipitation and deposition, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 51. [CrossRef] [Google Scholar]
  • Abedini A., Ashoori S., Torabi F. (2011) Reversibility of asphaltene precipitation in porous and non-porous media, Fluid Phase Eq. 308, 1–2, 129–134. [CrossRef] [Google Scholar]
  • Hu Y.F., Li S., Liu N., Chu Y.P., Park S.J., Ali Mansoori G., Guo T.M. (2004) Measurement and corresponding states modeling of asphaltene precipitation in Jilin reservoir oils, J. Pet. Sci. Eng. 41, 1–3, 169–182. [Google Scholar]
  • Hamouda A.A., Chukwudeme E.A., Mirza D. (2009) Investigating the effect of CO2 flooding on asphaltenic oil recovery and reservoir wettability, Energy Fuels 23, 2, 1118–1127. [Google Scholar]
  • Wang C., Li T., Gao H., Zhaoa J., Li H.A. (2017) Effect of asphaltene precipitation on CO2-flooding performance in low-permeability sandstones: A nuclear magnetic resonance study, RSC Adv. 7, 61, 38367–38376. [Google Scholar]
  • Cao M., Gu Y. (2013) Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2, flooding processes, Fuel 109, 157–166. [CrossRef] [Google Scholar]
  • Wang Z., Yang S., Lei H., Yang M., Li L., Yang S. (2017) Oil recovery performance and permeability reduction mechanisms in miscible CO2 water-alternative-gas (WAG) injection after continuous CO2 injection: An experimental investigation and modeling approach, J. Pet. Sci. Eng. 150, 376–385. [Google Scholar]
  • Amroun H., Tiab D. (2001) Alteration of reservoir wettability due to asphaltene deposition in Rhourd-Nouss Sud Est Field, Algeria, SPE Rocky Mountain Petroleum Technology Conference, Society of Petroleum Engineers. [Google Scholar]
  • Escrochi M., Nabipour M., Ayatollahi S.S., Mehranbod N. (2008) Wettability alteration at elevated temperatures: The consequences of asphaltene precipitation, SPE International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers. [Google Scholar]
  • Uetani T. (2014) Wettability alteration by asphaltene deposition: A field example, Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Abedini A., Torabi F. (2014) Oil recovery performance of immiscible and miscible CO2 huff-and-puff processes, Energy Fuels 28, 2, 774–784. [Google Scholar]
  • Wang X., Gu Y. (2011) Oil recovery and permeability reduction of a tight sandstone reservoir in immiscible and miscible CO2 flooding processes, Ind. Eng. Chem. Res. 50, 4, 2388–2399. [Google Scholar]
  • Srivastava R.K., Huang S.S., Dong M. (1999) Asphaltene deposition during CO2 flooding, SPE Prod. Facil. 14, 4, 235–245. [CrossRef] [Google Scholar]
  • Song Z., Zhu W., Wang X., Guo S. (2018) 2-D pore-scale experimental investigations of asphaltene deposition and heavy oil recovery by CO2 flooding, Energy Fuels 32, 3194–3201. [Google Scholar]
  • Fleury M., Deflandre F. (2003) Quantitative evaluation of porous media wettability using NMR relaxometry, Magn. Reson. Imag. 21, 3–4, 385–387. [CrossRef] [PubMed] [Google Scholar]
  • Looyestijn W.J., Hofman J. (2006) Wettability-index determination by nuclear magnetic resonance, SPE Reserv. Evalu. Eng. 9, 2, 146–153. [CrossRef] [Google Scholar]
  • Shikhov I., Li R., Arns C.H. (2018) Relaxation and relaxation exchange NMR to characterise asphaltene adsorption and wettability dynamics in siliceous systems, Fuel 220, 692–705. [CrossRef] [Google Scholar]
  • Amott E. (1959) Observations relating to the wettability of porous rock, Trans. AIME 216, 156–162. [Google Scholar]
  • ASTMD2007-03 (2007) Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method, ASTM International, West Conshohocken, PA. [Google Scholar]
  • Sheu E.Y. (2002) Petroleum asphaltene properties, characterization, and issues, Energy Fuels 16, 1, 74–82. [Google Scholar]
  • Coates G.R., Xiao L., Prammer M.G. (1999) NMR logging: Principles and applications, Halliburton Energy Services, Houston, pp. 8–33. [Google Scholar]
  • Loren J.D., Robinson J.D. (1970) Relations between pore size fluid and matrix properties, and NML measurements, Soc. Pet. Eng. J. 10, 3, 268–278. [CrossRef] [Google Scholar]
  • Megawati M., Madland M.V., Hiorth A. (2012) Probing pore characteristics of deformed chalk by NMR relaxation, J. Pet. Sci. Eng. 100, 123–130. [Google Scholar]
  • Yu Z., Liu L., Yang S., Li S., Yang Y. (2012) An experimental study of CO2–brine–rock interaction at in situ pressure–temperature reservoir conditions, Chem. Geol. 326, 88–101. [Google Scholar]
  • Mohamed I.M., Nasr-El-Din H.A. (2012) Formation damage due to CO2 sequestration in deep saline carbonate aquifers, SPE International Symposium and Exhibition on Formation Damage Control, Society of Petroleum Engineers. [Google Scholar]
  • Fischer S., Liebscher A., Wandrey M., the CO2 SINK Group (2010) CO2–brine–rock interaction – first results of long-term exposure experiments at in situ P-T conditions of the Ketzin CO2 reservoir, Chemie Erde 70, 155–164. [CrossRef] [Google Scholar]
  • Yu M., Liu L., Yang S., Yu Z., Li S., Yang Y., Shi X. (2016) Experimental identification of CO2–oil–brine–rock interactions: Implications for CO2 sequestration after termination of a CO2-EOR project, Appl. Geochem. 75, 137–151. [Google Scholar]
  • Mendoza de la Cruz J.L., Argüelles-Vivas F.J., Matías-Pérez V., Durán-Valencia C.A., López-Ramírez S. (2009) Asphaltene-induced precipitation and deposition during pressure depletion on a porous medium: An experimental investigation and modeling approach, Energy Fuels 23, 11, 5611–5625. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.