7th Takreer Research Centre Symposium
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
7th Takreer Research Centre Symposium
Article Number 2
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2018075
Published online 09 January 2019
  • Chevron Assay Library, H/CAMS, V. 10.0, Haverly Systems, Inc. [Google Scholar]
  • Speight J.G. (2014) Oil and gas corrosion prevention: from surface facilities to refineries, 7th edn, Gulf Professional Publishing, Massachusetts, USA/Oxford, UK. [Google Scholar]
  • Groysman A. (2017) Corrosion problems and solutions in oil refining and petrochemical industry, 1st edn, Springer, Switzerland. [CrossRef] [Google Scholar]
  • Groysman A. (2017) Corrosion problems and solutions in oil, gas, refining and petrochemical industry, Koroze Ochr. Mater. 61, 3, 100–117. [CrossRef] [Google Scholar]
  • Lefebvre X., Pasquier D., Gonzalez S., Epsztein T., Chirat M., Demanze F. (2015) Development of reactive barrier polymers against corrosion for the oil and gas industry: From formulation to qualification through the development of predictive multiphysics modeling, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 2, 291–303. [CrossRef] [Google Scholar]
  • Bhowmik P.K., Hossain M.E., Shamim J.A. (2012) Corrosion and its control in crude oil refining process, 6th International Mechanical Engineering & 14th Conference Annual Paper Meet (6IMEC&14APM), Dhaka, Bangladesh. [Google Scholar]
  • Piehl R.L. (1960) Correlation of corrosion in a crude distillation unit with chemistry of the crudes, Corrosion 16, 6, 305–307. [CrossRef] [Google Scholar]
  • Hucinska J. (2003) Influence of sulphur on high temperature degradation of steel structures in the refinery industry, Adv. Mat. Sci. 3, 1. [Google Scholar]
  • White R.A., Ehmke E.F. (1991) Materials selection for refineries and associated facilities, National Association of Corrosion Engineers, Houston, TX, USA. [Google Scholar]
  • Jin P., Nesic S., Wolf H.A. (2015) Analysis of corrosion scales formed on steel at high temperatures in hydrocarbons containing model naphthenic acids and sulfur compounds, Surf. Interface Anal. 47, 4, 454–465. [CrossRef] [Google Scholar]
  • Kane R.D., Cayard M.S. (2002) A comprehensive study on naphthenic acid corrosion, in: Corrosion, NACE, Houston, TX, USA. [Google Scholar]
  • Qu D.R., Zheng Y.G., Jiang X., Ke W. (2007) Correlation between the corrosivity of naphthenic acids and their chemical structures, Anti-Corros. Methods Mater. 54, 4, 211–218. [CrossRef] [Google Scholar]
  • Xin Q., Dettman H.D. (2016) Corrosivity study of sulfur compounds and naphthenic acids under refinery conditions, in: Corrosion, NACE, Vancouver, Canada. [Google Scholar]
  • Qu D.R., Zheng Y.G., Jing H.M., Yao Z.M., Ke W. (2006) High Temperature Naphthenic Acid Corrosion and Sulphidic Corrosion of Q235 and 5Cr1/2Mo Steels in Synthetic Refining Media, Corr. Sci. 48, 1960–1985. [CrossRef] [Google Scholar]
  • Dettman H.D., Li N., Wickramsinghe D., Xu Z., Chen X.N., Elliott G.R.D. (2012) The influence of naphthenic acid and sulfur compound structure on global crude corrosivity under vacuum distillation conditions, in: Corrosion, NACE, Salt Lake City, UT, USA. [Google Scholar]
  • Huang B.S., Yin W.F., Sang D.H., Jiang Z.Y. (2012) Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit, Appl. Surf. Sci. 259, 664–670. [CrossRef] [Google Scholar]
  • Jin P., Robbins W., Bota G. (2018) Effect of sulfur compounds on formation of protective scales in naphthenic acid corrosion in non-turbulent flow, Corr. Sci. 131, 223–234. [CrossRef] [Google Scholar]
  • Yépez O. (2005) Influence of different sulfur compounds on corrosion due to naphthenic acid, Fuel 84, 97–104. [CrossRef] [Google Scholar]
  • Timmins P.F. (1996) Predictive corrosion and failure control in process operations: as applied to the refining, petrochemical, and process industries, The Materials Information Society, Materials Park, OH, USA. [Google Scholar]
  • de Jong J.P., Downling N., Sargent M., Etheridge A., Saunders-Tack A., Fort W. (2007) Effect of mercaptans and other organic sulfur species on high temperature corrosion in crude and condensate distillation units, in: Corrosion, NACE International, Nashville, TN, USA. [Google Scholar]
  • Baker K.C. (2001) Prediction tools for sulfidic corrosion, Mater. Perform. 40, 62–65. [Google Scholar]
  • Jayaraman A., Saxena R.C. (1995) Corrosion and its Control in Petroleum Refineries – a Review, Corr. Prev. Control 42, 123–131. [Google Scholar]
  • Hua R., Wang J., Kong H., Liu J., Lu X., Xu G. (2004) Analysis of sulfur-containing compounds in crude oils by comprehensive two-dimensional gas chromatography with sulfur chemiluminescence detection, J. Sep. Sci. 27, 691–698. [CrossRef] [PubMed] [Google Scholar]
  • Lobodin V.V., Robbins W.K., Lu J., Rodgers R.P. (2015) Separation and characterization of reactive and non-reactive sulfur in petroleum and its fractions, Energy Fuels 29, 10, 6177–6186. [Google Scholar]
  • Couper A.S. (1963) High temperature mercaptan corrosion of steels, Corrosion 19, 11, 396–401. [CrossRef] [Google Scholar]
  • Faragher W.F., Morrell J.C., Comay S. (1928) Thermal decomposition of organic sulfur compounds, Ind. Eng. Chem. 20, 5, 527–532. [Google Scholar]
  • Suleiman M.I. (2015) Sulphur species corrosivity in refinery feed stock, Solid State Phenom. 227, 213–216. [CrossRef] [Google Scholar]
  • Suleiman M.I., Chandak N.R., Maqtari A.A. (2015) Innovative corrosion testing using a fully automatic fixed bed pilot plant unit, EuroCorr, Graz, Austria. [Google Scholar]
  • Jin P., Robbins W.K., Bota G. (2017) Effect of temperature on scale formation in high-temperature corrosion by model naphthenic acids and sulfur compounds under replenishing conditions, Energy Fuels 31, 9, 10222–10232. [Google Scholar]
  • Jin P., Nesic S., Wolf H.A. (2014) Analysis of corrosion scales formed on steel at high temperatures in hydrocarbons containing model naphthenic acids and sulfur compounds, Corrosion, San Antonio, TX, USA, NACE. [Google Scholar]
  • Patrick W.N. (1952) Investigation of the thermal decomposition of methyl and ethyl disulphides, Thesis, University of British Columbia, Vancouver, Canada. [Google Scholar]
  • Thompson C.J., Meyer R.A., Ball J.S. (1952) Thermal decomposition of sulfur compounds. I. 2-Methyl-2-propanethiol, J. Am. Chem. Soc. 74, 13, 3284–3287. [Google Scholar]
  • Thompson C.J., Meyer R.A., Ball J.S. (1952) Thermal Decomposition of Sulfur Compounds. II. 1-Pentanethiol, J. Am. Chem. Soc. 74, 13, 3287–3289. [Google Scholar]
  • Sehon A.H., Darwent B.D. (1954) The thermal decomposition of mercaptans, J. Am. Chem. Soc. 76, 19, 4806–4810. [Google Scholar]
  • Olsson T. (2012) Evaluation of corrosion in different parts of an oil refinery using corrosion coupons, Thesis, Chalmers University, Sweden. [Google Scholar]
  • Farrell D., Roberts L. (2010) A Study of high temperature sulfidation under actual process conditions, in: Corrosion, NACE, San Antonio, TX, USA. [Google Scholar]
  • Coleman H.J., Thompson C.J., Rall H.T., Smith H.M. (1953) Thermal stability of high-sulfur crude oils, Ind. Eng. Chem. 45, 12, 2706–2710. [Google Scholar]
  • Yang B., Tian S., Zhao S. (2006) A study of thermal decomposition of alkanethiols in pressure reactor Fuel Process. Technol. 87, 673–678. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.