- Angelli P., Hewitt G.F. (2000) Drop size distributions in horizontal oil-water dispersed flows, Chem. Eng. Sci. 55, 16, 3133–3143. https://doi.org/10.1016/S0009-2509(99)00585-0. [Google Scholar]
- Arnold K., Stewart M. (1999) Arnold K., Stewart M., Surface production operations: design of oil-handling systems and facilities, Second Edition, Chapter 1, 2, Gulf Professional Publishing, ISBN 9780884158219. https://doi.org/10.1016/B978-088415821-9/50002-6. http://www.sciencedirect.com/science/article/pii/B9780884158219500026. [Google Scholar]
- Batchelor G.K. (1951) Pressure fluctuations in isotropic turbulence, Math. Proc. Camb. Philos. Soc. 47, 2, 359–374. https://doi.org/10.1017/S0305004100026712. [NASA ADS] [CrossRef] [Google Scholar]
- Clay P.H. (1940a) The mechanism of emulsion formation in turbulent flow. I. Experimental Part, Proc. Roy. Acad. Sci. (Amsterdam) 43, 852. [Google Scholar]
- Clay P.H. (1940b) The mechanism of emulsion formation in turbulent flow. II. Theoretical part and discussion, Proc. Roy. Acad. Sci. (Amsterdam) 43, 879. [Google Scholar]
- Cristini V., Blawzdziewicz J., Loewenberg M., Collins L. (2003) Breakup in stochastic stokes flows: sub-Kolmogorov drops in isotropic turbulence, J. Fluid Mech. 492, 231–250. https://doi.org/10.1017/S0022112003005561. [Google Scholar]
- Davies J.T. (1985) Drop sizes of emulsions related to turbulent energy dissipation rates, Chem. Eng. Sci. 40, 839–842. https://doi.org/10.1016/0009-2509(85)85036-3. [Google Scholar]
- Fossen M., Schumann H. (2016) Experimental study of the relative effect of pressure drop and flow rate on the droplet size downstream a pipe restriction, J. Dispers. Sci. Technol. 38, 6, 826–831. https://doi.org/10.1080/01932691.2016.1207184. [Google Scholar]
- Galinat S., Masbernat O., Guiraud P., Dalmazzone C., Noïk C. (2005) Drop break-up in turbulent pipe flow downstream of a restriction, Chem. Eng. Sci. 60, 23, 6511–6528. https://doi.org/10.1016/j.ces.2005.05.012. [Google Scholar]
- Grace H.P. (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems, Chem. Eng. Commun. 14, 225–277. https://doi.org/10.1080/00986448208911047. [Google Scholar]
- Hinze J.O. (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion process, AIChE J. 1, 3, 289–295. https://doi.org/10.1002/aic.690010303. [Google Scholar]
- Husveg T., Bilstad T., Guinée P.G.A., Jernsletten J., Knudsen B., Nordbo H.T. (2009) A cyclone-based low shear valve for enhanced oil-water separation, Offshore Technology Conference, OTC 2009, https://doi.org/10.4043/20029-MS. [Google Scholar]
- Janssen P.H., Noik C., Dalmazzone C. (2001) Emulsion formation in a model choke-valve, Society of Petroleum Engineers, SPE 71473. https://doi.org/10.2118/71473-MS [Google Scholar]
- Johansen F.C. (1930) Flow through pipe orifices at low Reynolds numbers, Proc. R. Soc. Lond. A 126, 231–245. https://doi.org/10.1098/rspa.1930.0004. Published 1 January 1930. [CrossRef] [Google Scholar]
- Karbstein H., Schubert H. (1995) Developments in the continuous mechanical production of oil-in-water macro-emulsions, Chem. Eng. Process. Process. Intensification 34, 3, 205–211. https://doi.org/10.1016/0255-2701(94)04005-2. [CrossRef] [Google Scholar]
- Kubie J., Gardner G.C. (1977) Drop sizes and drop dispersion in straight horizontal tubes and in helical coils, Chem. Eng. Sci. 32, 195–202. https://doi.org/10.1016/0009-2509(77)80105-X. [Google Scholar]
- Kwakernaak P.J., van den Broek W.M.G.T., Currie P.K. (2007) Reduction of oil droplet breakup in a choke, Society of Petroleum Engineers, SPE 106693. https://doi.org/10.2118/106693-MS. [Google Scholar]
- Lakshmana Rao N.S., Sridharam K., Alvi S.H. (1977) Critical Reynolds number for orifice and nozzle flows in pipes, J. Hydraulic Res. 15, 2. https://doi.org/10.1080/00221687709499654. [CrossRef] [Google Scholar]
- Lemenand T., Della Valle D., Zellouf Y., Peerhossaini H. (2003) Droplets formation in turbulent mixing of two immiscible fluids in a new type of static mixer, Int. J. Multiph. Flow 29, 5, 813–840. https://doi.org/10.1016/S0301-9322(03)00032-6. [CrossRef] [Google Scholar]
- Lockhart F.J., Chilingarian G.V., Kumar S. (1987) Chapter 3 Separation of oil and Gas, in: G.V. Chilingarian, J.O. Robertson, S. Kumar (eds), Developments in Petroleum Science, vol. 19, Elsevier, pp. 59–108, ISSN 0376-7361, ISBN 9780444416254, https://doi.org/10.1016/S0376-7361(08)70532-6. http://www.sciencedirect.com/science/article/pii/S0376736108705326. [CrossRef] [Google Scholar]
- Manning F.S., Thompson R.E. (1995) Chapter 1, 2 and 6 – Oil field processing, Vol. 2, Pennwell Books, Crude Oil, ISBN 9780878143542. [Google Scholar]
- Mitre J.F., Lage P.L.C., Souza M.A., Silva E., Barca L.F., Moraes A.O.S., Coutinho R.C.C., Fonseca E.F. (2014) Droplet breakage and coalescence models for the flow of water-in-oil emulsions through a valve-like element, Chem. Eng. Res. Des. J. 92, 2493–2508. [CrossRef] [Google Scholar]
- Paolinelli L.D., Yao A.R.J. (2017) Characterization of droplets sizes in large scale oil-water flow downstream from a globe valve, Int. J. Multiph. Flow 99, 132–150. https://doi.org/10.1016/j.ijmultiphaseflow.2017.09.014. [CrossRef] [Google Scholar]
- Percy J.S., Sleicher C.A. (1983) Drop breakup in the flow of immiscible liquids through an orifice in a pipe, AIChE J. 29, 1, 161–164. https://doi.org/10.1002/aic.690290125. [Google Scholar]
- Rueger P.E., Calabrese R.V. (2013a) Dispersion of water into oil in a Rotor-Stator mixer. Part 1: drop breakup in dilute systems, Chem. Eng. Res. Des. 91, 2122–2133. https://doi.org/10.1016/j.cherd.2013.05.018. [Google Scholar]
- Rueger P.E., Calabrese R.V. (2013b) Dispersion of water into oil in a Rotor-stator Mixer. Part 2: Effect of phase fraction, Chem. Eng. Res. Des. 91, 2134–2141. https://doi.org/10.1016/j.cherd.2013.06.010. [Google Scholar]
- Simmons M.J.H., Azzopardi B.J. (2001) Drop size distributions in dispersed liquid-liquid pipe flow, Int. J. Multiph. Flow 27, 5, 843–859. https://doi.org/10.1016/S0301-9322(00)00055-0. [CrossRef] [Google Scholar]
- Sleicher C.A. (1962) Maximum stable drop size in turbulent flow, AIChE J. 8, 4, 471–477. https://doi.org/10.1002/aic.690080410. [Google Scholar]
- Stone H.A. (1994) Dynamics of drop deformation and breakup in viscous fluids, Annu. Rev. Fluid Mech. 26, 65–102. https://doi.org/10.1146/annurev.fl.26.010194.000433. [Google Scholar]
- Taylor G.I. (1932) The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. Lond. A 138, 41–48. Published 1 October 1932 https://doi.org/10.1098/rspa.1932.0169. [CrossRef] [Google Scholar]
- Taylor G.I. (1934) The formation of emulsions in definable fields of flow, Proc. R. Soc. Lond. A 146, 501–523. Published 1 October 1934, https://doi.org/10.1098/rspa.1934.0169. [CrossRef] [Google Scholar]
- van der Zande M.J. (2000) Droplet break-up in turbulent oil-in-water flow through a restriction, PhD Thesis, ISBN 90-9013-870-6. [Google Scholar]
- van der Zande M.J., Muntinga J.H., van den Broek W.M.G.T. (1998a) Emulsification of production fluids in the choke valve, Society of Petroleum Engineers, SPE 49173. https://doi.org/10.2118/49173-MS. [Google Scholar]
- van der Zande M.J., van den Broek W.M.G.T. (1998b) Breakup of oil droplets in the production system, Proc. of ASME Energy Sources Technology Conference and Exhibition, Houston, ETCE98-4744. [Google Scholar]
- van der Zande M.J., van den Broek W.M.G.T. (1998c) The effect of tubing and choke valve on oil-droplet break-up, Proceedings of the 1st North American Conference on Multiphase Technology, June 10–11, Banff, Canada, pp. 89–100. [Google Scholar]
- van der Zande M.J., van Heuven K.R., Muntinga J.H., van den Broek W.M.G.T. (1999a) Effect of flow through a choke valve on emulsion stability, Society of Petroleum Engineers, SPE 56640. https://doi.org/10.2118/56640-MS. [Google Scholar]
- van der Zande M.J., Muntinga J.H., van den Broek W.M.G.T. (1999b) The effects of production rate and choke size on emulsion stability, Paper EXPL-6-MZ, presented at the 3rd International Seminar in Practices of Oil and Gas Exploitation, INGEPET 99, October 27–29, Lima, Peru. [Google Scholar]
- Vankova N., Tcholakova S., Denkov N.D., Ivanov I.B., Vulchev V.D., Danner T. (2007) Emulsification in Turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes, J. Colloid Interface Sci. 312, 363–380. https://doi.org/10.1016/j.jcis.2007.03.059. [Google Scholar]
- Walstra P. (1983) Encyclopedia of emulsion technology, Vol. 1, Chapter 2, in: Becher P. (ed), Marcel Dekker, New York. ISBN-13: 978-0824718763, ISBN-10: 0824718763. [Google Scholar]
- Walstra P. (1993) Principles of emulsion formation, Chem. Eng. Sci. 48, 2, 333–349. https://doi.org/10.1016/0009-2509(93)80021-H. [Google Scholar]
- Walstra P., Smulders P.E.A. (1998) Modern aspects of emulsion science, Chapter 2, 1st edition (October 9, 1998), in: Binks B.P. (ed), Royal Society of Chemistry, UK, pp. 56–99. http://dx.doi.org/10.1039/9781847551474-00056. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
|
|
---|---|---|
Article Number | 1 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/ogst/2018079 | |
Published online | 03 January 2019 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.