7th Takreer Research Centre Symposium
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
7th Takreer Research Centre Symposium
Article Number 3
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2018077
Published online 09 January 2019
  • Al Zarooni M., Elshorbagy W. (2006) Characterization and assessment of Al Ruwais refinery wastewater, J. Hazardous Mater. A136, 398–405. [CrossRef] [Google Scholar]
  • Munirasu S., Abu Haija M., Banat F. (2016) Use of membrane technology for oil field and refinery produced water treatment – a review, Process Safety Env. Protection 100, 183–202. [CrossRef] [Google Scholar]
  • Dold P.L. (1989) Current practice for treatment of petroleum refinery wastewater and toxics removal, Water Qual. Res. J. 24, 3, 363–390. [CrossRef] [Google Scholar]
  • Ahmadun F.R., Pendashteh A., Abdullah L., Biak D., Madaeni S., Zainal Z.Z. (2009) Review of technologies for oil and gas produced water treatment, J. Hazardous Mater. 170, 2–3, 530–551. [Google Scholar]
  • Neff J.M. (2002) Bioaccumulation in marine organisms, Elsevier, Netherlands. [Google Scholar]
  • U.S. Environmental Protection Agency, http://www.epa.gov [Google Scholar]
  • OSPAR Commission (2005) Report on discharges spills and emissions from offshore oil and gas installations, ISBN 1-904426-60-3, Publication Number: 2005/221. [Google Scholar]
  • PCFC-Trakhees (2013) Regulation EN 5. 0 – Water Environment, Dept. of Planning & Dev., Dubai Gov., www.trakhees.ae. [Google Scholar]
  • Carter N. (2010), Trade Effluent Control Regulations, Abu Dhabi Regulation & Supervision Bureau, 48 p. [Google Scholar]
  • Cabassud C., Anselme C., Bersillon J.L., Aptel P. (1991) Ultrafiltration as a nonpolluting alternative to traditional clarification in water treatment, Filtration and Separation 28, 3, 194–198. [CrossRef] [Google Scholar]
  • Madaeni S.S. (1999) Review paper: The application of membrane technology for water disinfection, Water Res. 33, 2, 301–308. [Google Scholar]
  • Regunathan P., Beauman W.H., Kreusch E.G. (1983) Efficiency of point-of-use treatment devices, J. Am. Water. Works. Ass. 75, 1, 42–50. [CrossRef] [Google Scholar]
  • Maab H., Francis L., Al-Saadi A., Aubry C., Ghaffour N., Amy G., Nunes S.P. (2012) Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, J. Membr. Sci. 423–424, 11–19. [CrossRef] [Google Scholar]
  • Alkhudhiri A., Darwish N., Hilal N. (2012) Membrane distillation: A comprehensive review, Desalination 287, 2–18. [CrossRef] [Google Scholar]
  • Alklaibi A., Lior N. (2006) Heat and mass transfer resistance analysis of membrane distillation, J. Membr. Sci. 282, 1–2, 362–369. [CrossRef] [Google Scholar]
  • Khayet M. (2011) Membranes and theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci. 164, 56–88. [CrossRef] [PubMed] [Google Scholar]
  • Janajreh I., Suwwan D. (2014) Numerical simulation of Direct Contact Membrane Desalination (DCMD): II, Int. J. Eng. Res. Innov. 6, 2, 21–33. [Google Scholar]
  • Janajreh I., Suwwan D., Hashaikeh R. (2017) Assessment of direct contact membrane distillation under different configurations, velocities, and membrane properties, Appl. Energy 185, 2058–2073. [Google Scholar]
  • Janajreh I., El Kadi K., Hashaikeh R., Ahmed A. (2017) Numerical investigation of air gap membrane distillation (AGMD): Seeking optimal performance, Desalination 424, 122–130. [CrossRef] [Google Scholar]
  • Lawson K.W., Lloyd D.R. (1996) Membrane distillation. II. Direct contact MD, J. Membr. Sci. 120, 123–133. [Google Scholar]
  • Liu F., Hashim N.A., Liu Y., Abed M.R. (2011) Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375, 1–2, 1–27. [CrossRef] [Google Scholar]
  • Zuo G., Wang R. (2013) Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation, J. Memb. Sci. 447, 26–35. [Google Scholar]
  • Wang Z., Lin S. (2017) The impact of low-surface-energy functional groups on oil fouling resistance in membrane distillation, J. Memb. Sci. 527, 68–77. [Google Scholar]
  • Kwon G., Post E., Tuteja A. (2015) Membrane with selective wettability for the separation of oil-water mixtures, MRS Commun. 5, 475–494. [Google Scholar]
  • Lee J., Boo C., Ryu W.H., Taylor A., Elimelech M. (2016) Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold, ACS Appl. Mater. Interfaces 8, 17, 11154–11161. [Google Scholar]
  • Lin S., Nejati S., Boo C., Hu Y., Osuji C., Elimelech M. (2014) Omniphobic membranes for robust membrane distillation, Env. Sci. Tech. Lett. 1, 443–447. [CrossRef] [Google Scholar]
  • Wang Z., Hou D., Lin S. (2016) Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation, Env. Sci. Tech. 50, 7, A-I. [Google Scholar]
  • Barnett S.M. (2001) Oil/water separation using nanofiltration membrane technology, Sep. Sci. Technol. 36, 1527–1542. [Google Scholar]
  • Ahmed F., Laila B., Hilal N., Hashaikeh R. (2014) Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation, Desalination 344, 48–54. [CrossRef] [Google Scholar]
  • Padaki M., Murali S., Abdullah M.S., Misdan N., Moslehyani A., Jassim M.A., Hilal N., Ismail A.F. (2015) Membrane technology enhancement in oil-water separation. A review, Desalination 357, 197–207. [CrossRef] [Google Scholar]
  • Wang Z., Jiang X., Cheng X., Lau C.H., Shao L. (2015) Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation, ACS Appl. Mater. Interfaces 7, 9534–9545. [Google Scholar]
  • Liu M.J., Wang S.T., Wei Z.W., Song Y.L., Jiang L. (2009) Bioinspired design of a super-oleophobic and low adhesive water/solid interface, Adv. Mater. 21, 665. [Google Scholar]
  • Young T. (1805) An essay on the cohesion of fluids, Phil. Trans. R. Soc. 95, 65. [Google Scholar]
  • Guillen-Burrieza E., Mavukkandy M.O., Bilad M.R., Arafat H.A. (2016) Understanding wetting phenomena in membrane distillation and how operational parameters can affect it, J. Membr. Sci. 515, 163–174. [CrossRef] [Google Scholar]
  • Tuteja A., Choi W., Mabry J., McKinley G., Cohen R. (2008) Robust omniphobic surfaces, Proc. Natl. Acad. Sci. 105, 47, 18200–18205. [CrossRef] [Google Scholar]
  • Wu Y., Cai M., Li Z., Song X., Wanf H., Pei X. (2014) Slip flow of diverse liquids on robust superomniphobic surfaces, J. Colloid Interface Sci. 414, 9–13. [Google Scholar]
  • Lee D., Cho K., Jang S., Song Y., Youn J. (2012) Liquid slip on nanostructured surface, Langmuir 28, 10488–10494. [CrossRef] [PubMed] [Google Scholar]
  • Iguchi C.Y., dos Santos W.N., Gregorio R. (2007) Determination of thermal properties of pyroelectric polymers, copolymers and blends by the laser flash technique, Polym. Test. 26, 6, 788–792. [Google Scholar]
  • Pangarkar B.L., Sane M.G. (2011) Heat and mass transfer analysis in air gap membrane distillation process for desalination, Membr. Water Treat. 2, 3, 159–173. [CrossRef] [Google Scholar]
  • Chen T.-C., Ho C.-D., Yeh H.-M. (2009) Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Membr. Sci 330, 1–2, 279–287. [Google Scholar]
  • Felder R.M., Rousseau R.W. (2000) Elementary principles of chemical processes, 3rd edn., John Wiley & Sons, New York. [Google Scholar]
  • Termpiyakul P., Jiraratananon R., Srisurichan S. (2005) Heat and mass transfer characteristics of a direct contact membrane distillation process for desalination, Desalination 177, 1–3, 133–141. [CrossRef] [Google Scholar]
  • Záarate J.M., Velázquez A., Peña L., Mengual J.I. (1993) Influence of Temperature Polarization on Separation by Membrane Distillation, Sep. Sci. Technol. 28, 7, 1421–1436. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.