Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Numéro d'article 45
Nombre de pages 11
DOI https://doi.org/10.2516/ogst/2019017
Publié en ligne 16 mai 2019
  • Aggelopoulos C., Klepetsanis P., Theodoropoulou M., Pomoni K., Tsakiroglou C.D. (2005) Large-scale effects on the resistivity index of porous media, J. Contam. Hydrol. 77, 299–323. [CrossRef] [PubMed] [Google Scholar]
  • Aggelopoulos C.A., Tsakiroglou C.D. (2008) The effect of micro-heterogeneity and capillary number on capillary pressure and relative permeability curves of soils, Geoderma 148, 25–34. [CrossRef] [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1995a) Flow regimes and relative permeabilities during steady-state two-phase flow in porous media, J. Fluid Mech. 293, 207–236. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1995b) Generalized relative permeability coefficients during steady-state two-phase flow in porous media and correlation with the flow mechanisms, Transp. Porous Media 20, 135–168. [CrossRef] [Google Scholar]
  • Avraam D.G., Payatakes A.C. (1999) Flow mechanisms, relative permeabilities, and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability, Ind. Eng. Chem. Res. 38, 778–786. [CrossRef] [Google Scholar]
  • Constantinides G.N., Payatakes A.C. (1996) Network simulation of steady-state two-phase flow in consolidated porous media, AIChE J. 42, 369–382. [CrossRef] [PubMed] [Google Scholar]
  • Eftekhari A.A., Farajzadeh R. (2017) Effect of foam on liquid phase mobility in porous media, Scientific Reports 7, 43870. [CrossRef] [PubMed] [Google Scholar]
  • Erpelding M., Sinha S., Tallakstad K.T., Hansen A., Flekkoy E.G., Maloy K.J. (2013) History independence of steady-state in simultaneous two-phase flow through two-dimensional porous media, Phys. Rev. E 88, 053004. [CrossRef] [Google Scholar]
  • Grøva M., Hansen A. (2011) Two-phase flow in porous media: power-law scaling of effective permeability, J. Phys. Conf. Ser. 319, 012009. [CrossRef] [Google Scholar]
  • Gutierrez B., Juarez F., Ornelas L., Zeppieri S., Lopez de Ramos A. (2008) Experimental study of gas-liquid two-phase flow in glass micromodels, Int. J. Thermophys. 29, 2126–2135. [CrossRef] [Google Scholar]
  • Joekar-Niasar V., Hassanizadeh M., Dahle H.K. (2010) Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling, J. Fluid Mech. 655, 38–71. [CrossRef] [Google Scholar]
  • Kamali F., Hussain F. (2017) Field-scale simulation of CO2 enhanced oil recovery and storage through SWAG injection using laboratory estimated relative permeabilities, J. Pet. Sci. Eng. 156, 396–407. [CrossRef] [Google Scholar]
  • Johnson A., Patil S., Dandekar A. (2011) Experimental investigation of gas-water relative permeability for gas-hydrate bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well Alaska North Slope, Marine Petrol. Geol. 28, 419–426. [CrossRef] [Google Scholar]
  • Ramstad T., Hansen A.H. (2006) Cluster evolution in steady-state two-phase flow in porous media, Phys. Rev. E 73, 026306. [CrossRef] [Google Scholar]
  • Ramstad T., Idowu N., Nardi C., Oren P.-E. (2012) Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks, Transp. Porous Media 94, 487–504. [CrossRef] [Google Scholar]
  • Reynolds C.A., Krevor S. (2015) Characterizing flow behavior for gas injection: Relative permeability of CO2-brine and N2-water in heterogeneous rocks, Water Resour. Res. WR018046, 9464–9489. [CrossRef] [Google Scholar]
  • Sherafati M., Jessen K. (2017) Dynamic relative permeability and Simulation of WAG injection processes, Transp. Porous Media 117, 125–147. [CrossRef] [Google Scholar]
  • Sidiq H., Amin B., Kennaird T. (2017) The study of relative permeability and residual gas saturation at high pressures and high temperatures, Adv. Geoenergy Res. 1, 64–68. [Google Scholar]
  • Sinha S., Hansen A. (2012) Effective rheology of immiscible two-phase flow in porous media, Europhys. Lett. 99, 44004. [CrossRef] [Google Scholar]
  • Stewart W.E., Caracotsios M. (2008) Computer-Aided Modeling of Reactive Systems, John Wiley & Sons, Hoboken, New Jersey. [CrossRef] [Google Scholar]
  • Tallakstad K.T., Lovoll G., Knudsen H.A., Ramstad T., Flekkoy E.G., Maloy K.J. (2009a) Steady-state, simultaneous two-phase flow in porous media: an experimental study, Phys. Rev. E 80, 036308. [CrossRef] [Google Scholar]
  • Tallakstad K.T., Knudsen H.A., Ramstad T., Lovoll G., Maloy K.J., Toussaint R., Flekkoy E.G. (2009b) Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502. [CrossRef] [PubMed] [Google Scholar]
  • Terzi K., Bountas I., Aggelopoulos C.A., Tsakiroglou C.D. (2014) Effects of carbon dioxide on the mobilization of metals from aquifers, Environ. Sci. Technol. 148, 4386–4394. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Avraam D.G., Payatakes A.C. (2007) Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks, Adv. Water Res. 30, 1981–1992. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Aggelopoulos C.A., Terzi K., Avraam D.G., Valavanides M. (2015) Steady-state two-phase relative permeability functions of porous media: a revisit, Int. J. Multiphase Flow 73, 34–42. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Theodoropoulou M., Karoutsos V. (2003) Non-equilibrium capillary pressure and relative permeability curves of porous media, AIChE J. 49, 2472–2486. [CrossRef] [Google Scholar]
  • Valavanides M.S., Constantinides G.N., Payatakes A.C. (1998) Mechanistic model of steady-state two-phase flow in porous media based on ganglion dynamics, Transp. Porous Media 30, 267–299. [CrossRef] [Google Scholar]
  • Valavanides M.S. (2012) Steady-state two-phase flow in porous media: Review of progress in the development of the DeProF theory bridging pore to statistical thermodynamics scales, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 67, 787–804. [CrossRef] [Google Scholar]
  • Valavanides M.S., Totaj E., Tsokopoulos M. (2016) Energy efficiency characteristics in steady-state relative permeability diagrams of two-phase flow in porous media, J. Petrol. Sci. Eng. 147, 181–201. [CrossRef] [Google Scholar]
  • Wang Y., Bryan C., Dewers T., Heath J.E., Jove-Colon C. (2013) Ganglion dynamics and its implications to geologic carbon dioxide storage, Environ. Sci. Technol. 47, 219–226. [CrossRef] [PubMed] [Google Scholar]
  • Wu F., Fan Q., Huang D., Ma L., Linag X., Sima L. (2016) Predicting gas-water relative permeability using nuclear magnetic resonance and mercury injection capillary pressure measurements, J. Nat. Gas Sci. Eng. 32, 35–47. [CrossRef] [Google Scholar]
  • Zhang D., Papadikis K., Gu S. (2016) A lattice Boltzmann study on the impact of the geometrical properties of porous media on the steady state relative permeabilities on two-phase immiscible flows, Adv. Water Resour. 95, 61–79. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.