7th Takreer Research Centre Symposium
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
7th Takreer Research Centre Symposium
Numéro d'article 3
Nombre de pages 9
DOI https://doi.org/10.2516/ogst/2018077
Publié en ligne 9 janvier 2019
  • Al Zarooni M., Elshorbagy W. (2006) Characterization and assessment of Al Ruwais refinery wastewater, J. Hazardous Mater. A136, 398–405. [CrossRef] [Google Scholar]
  • Munirasu S., Abu Haija M., Banat F. (2016) Use of membrane technology for oil field and refinery produced water treatment – a review, Process Safety Env. Protection 100, 183–202. [CrossRef] [Google Scholar]
  • Dold P.L. (1989) Current practice for treatment of petroleum refinery wastewater and toxics removal, Water Qual. Res. J. 24, 3, 363–390. [CrossRef] [Google Scholar]
  • Ahmadun F.R., Pendashteh A., Abdullah L., Biak D., Madaeni S., Zainal Z.Z. (2009) Review of technologies for oil and gas produced water treatment, J. Hazardous Mater. 170, 2–3, 530–551. [Google Scholar]
  • Neff J.M. (2002) Bioaccumulation in marine organisms, Elsevier, Netherlands. [Google Scholar]
  • U.S. Environmental Protection Agency, http://www.epa.gov [Google Scholar]
  • OSPAR Commission (2005) Report on discharges spills and emissions from offshore oil and gas installations, ISBN 1-904426-60-3, Publication Number: 2005/221. [Google Scholar]
  • PCFC-Trakhees (2013) Regulation EN 5. 0 – Water Environment, Dept. of Planning & Dev., Dubai Gov., www.trakhees.ae. [Google Scholar]
  • Carter N. (2010), Trade Effluent Control Regulations, Abu Dhabi Regulation & Supervision Bureau, 48 p. [Google Scholar]
  • Cabassud C., Anselme C., Bersillon J.L., Aptel P. (1991) Ultrafiltration as a nonpolluting alternative to traditional clarification in water treatment, Filtration and Separation 28, 3, 194–198. [CrossRef] [Google Scholar]
  • Madaeni S.S. (1999) Review paper: The application of membrane technology for water disinfection, Water Res. 33, 2, 301–308. [Google Scholar]
  • Regunathan P., Beauman W.H., Kreusch E.G. (1983) Efficiency of point-of-use treatment devices, J. Am. Water. Works. Ass. 75, 1, 42–50. [CrossRef] [Google Scholar]
  • Maab H., Francis L., Al-Saadi A., Aubry C., Ghaffour N., Amy G., Nunes S.P. (2012) Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, J. Membr. Sci. 423–424, 11–19. [CrossRef] [Google Scholar]
  • Alkhudhiri A., Darwish N., Hilal N. (2012) Membrane distillation: A comprehensive review, Desalination 287, 2–18. [CrossRef] [Google Scholar]
  • Alklaibi A., Lior N. (2006) Heat and mass transfer resistance analysis of membrane distillation, J. Membr. Sci. 282, 1–2, 362–369. [CrossRef] [Google Scholar]
  • Khayet M. (2011) Membranes and theoretical modeling of membrane distillation: A review, Adv. Colloid Interface Sci. 164, 56–88. [CrossRef] [PubMed] [Google Scholar]
  • Janajreh I., Suwwan D. (2014) Numerical simulation of Direct Contact Membrane Desalination (DCMD): II, Int. J. Eng. Res. Innov. 6, 2, 21–33. [Google Scholar]
  • Janajreh I., Suwwan D., Hashaikeh R. (2017) Assessment of direct contact membrane distillation under different configurations, velocities, and membrane properties, Appl. Energy 185, 2058–2073. [Google Scholar]
  • Janajreh I., El Kadi K., Hashaikeh R., Ahmed A. (2017) Numerical investigation of air gap membrane distillation (AGMD): Seeking optimal performance, Desalination 424, 122–130. [CrossRef] [Google Scholar]
  • Lawson K.W., Lloyd D.R. (1996) Membrane distillation. II. Direct contact MD, J. Membr. Sci. 120, 123–133. [Google Scholar]
  • Liu F., Hashim N.A., Liu Y., Abed M.R. (2011) Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375, 1–2, 1–27. [CrossRef] [Google Scholar]
  • Zuo G., Wang R. (2013) Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation, J. Memb. Sci. 447, 26–35. [Google Scholar]
  • Wang Z., Lin S. (2017) The impact of low-surface-energy functional groups on oil fouling resistance in membrane distillation, J. Memb. Sci. 527, 68–77. [Google Scholar]
  • Kwon G., Post E., Tuteja A. (2015) Membrane with selective wettability for the separation of oil-water mixtures, MRS Commun. 5, 475–494. [Google Scholar]
  • Lee J., Boo C., Ryu W.H., Taylor A., Elimelech M. (2016) Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold, ACS Appl. Mater. Interfaces 8, 17, 11154–11161. [Google Scholar]
  • Lin S., Nejati S., Boo C., Hu Y., Osuji C., Elimelech M. (2014) Omniphobic membranes for robust membrane distillation, Env. Sci. Tech. Lett. 1, 443–447. [CrossRef] [Google Scholar]
  • Wang Z., Hou D., Lin S. (2016) Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation, Env. Sci. Tech. 50, 7, A-I. [Google Scholar]
  • Barnett S.M. (2001) Oil/water separation using nanofiltration membrane technology, Sep. Sci. Technol. 36, 1527–1542. [Google Scholar]
  • Ahmed F., Laila B., Hilal N., Hashaikeh R. (2014) Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation, Desalination 344, 48–54. [CrossRef] [Google Scholar]
  • Padaki M., Murali S., Abdullah M.S., Misdan N., Moslehyani A., Jassim M.A., Hilal N., Ismail A.F. (2015) Membrane technology enhancement in oil-water separation. A review, Desalination 357, 197–207. [CrossRef] [Google Scholar]
  • Wang Z., Jiang X., Cheng X., Lau C.H., Shao L. (2015) Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation, ACS Appl. Mater. Interfaces 7, 9534–9545. [Google Scholar]
  • Liu M.J., Wang S.T., Wei Z.W., Song Y.L., Jiang L. (2009) Bioinspired design of a super-oleophobic and low adhesive water/solid interface, Adv. Mater. 21, 665. [Google Scholar]
  • Young T. (1805) An essay on the cohesion of fluids, Phil. Trans. R. Soc. 95, 65. [Google Scholar]
  • Guillen-Burrieza E., Mavukkandy M.O., Bilad M.R., Arafat H.A. (2016) Understanding wetting phenomena in membrane distillation and how operational parameters can affect it, J. Membr. Sci. 515, 163–174. [CrossRef] [Google Scholar]
  • Tuteja A., Choi W., Mabry J., McKinley G., Cohen R. (2008) Robust omniphobic surfaces, Proc. Natl. Acad. Sci. 105, 47, 18200–18205. [CrossRef] [Google Scholar]
  • Wu Y., Cai M., Li Z., Song X., Wanf H., Pei X. (2014) Slip flow of diverse liquids on robust superomniphobic surfaces, J. Colloid Interface Sci. 414, 9–13. [Google Scholar]
  • Lee D., Cho K., Jang S., Song Y., Youn J. (2012) Liquid slip on nanostructured surface, Langmuir 28, 10488–10494. [CrossRef] [PubMed] [Google Scholar]
  • Iguchi C.Y., dos Santos W.N., Gregorio R. (2007) Determination of thermal properties of pyroelectric polymers, copolymers and blends by the laser flash technique, Polym. Test. 26, 6, 788–792. [Google Scholar]
  • Pangarkar B.L., Sane M.G. (2011) Heat and mass transfer analysis in air gap membrane distillation process for desalination, Membr. Water Treat. 2, 3, 159–173. [CrossRef] [Google Scholar]
  • Chen T.-C., Ho C.-D., Yeh H.-M. (2009) Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Membr. Sci 330, 1–2, 279–287. [Google Scholar]
  • Felder R.M., Rousseau R.W. (2000) Elementary principles of chemical processes, 3rd edn., John Wiley & Sons, New York. [Google Scholar]
  • Termpiyakul P., Jiraratananon R., Srisurichan S. (2005) Heat and mass transfer characteristics of a direct contact membrane distillation process for desalination, Desalination 177, 1–3, 133–141. [CrossRef] [Google Scholar]
  • Záarate J.M., Velázquez A., Peña L., Mengual J.I. (1993) Influence of Temperature Polarization on Separation by Membrane Distillation, Sep. Sci. Technol. 28, 7, 1421–1436. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.