Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 61
Number of page(s) 7
DOI https://doi.org/10.2516/ogst/2018070
Published online 28 November 2018
  • Amidpour M., Polley G. (1997) Application of problem decomposition in process integration, Chem. Eng. Res. Des 75, 1, 53–63. [CrossRef] [Google Scholar]
  • Avenier P., Bazer-Bachi D., Bazer-Bachi F., Chizallet C., Deleau F., Diehl F., Gornay J., Lemaire É., Moizan-Basle V., Plais C., Raybaud P., Richard F., Lacombe S. (2016) Catalytic reforming: Methodology and process development for a constant optimisation and performance enhancement, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 3, 41. [CrossRef] [Google Scholar]
  • Biegler L.T., Grossmann I.E., Westerberg A.W. (1997) Systematic methods for chemical process design, N. p., United States, Web. [Google Scholar]
  • Chang H., Shih C.M. (2005) Simulation and optimization for power plant flue gas CO2 absorption-stripping systems, Sep. Sci. Technol. 40, 4, 877–909. [CrossRef] [Google Scholar]
  • Furman K.C., El-Bakry A.S., Song J.H. (2017) Optimization in the oil and gas industry, Optim. Eng. Springer, US 18, 1, 1–2. [CrossRef] [Google Scholar]
  • Geankoplis C.J., Hersel A.A., Lepek D.H. (2018) Transport processes and separation process principles, Prentice Hall, New Jersey, USA. [Google Scholar]
  • Gerberich H.R., Seaman G.C. (1994) Formaldehyde: Encyclopedia of chemical technology, Vol. 11, Wiley, New York, USA. [Google Scholar]
  • Gong H.-F., Chen Z.S., Zhu Q.X., He Y.L. (2017) A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries, Appl. Energy 197, 405–415. [CrossRef] [Google Scholar]
  • Gundersen T. (2000) A process integration primer – Implementing agreement on process integration, International Energy Agency, SINTEF Energy Research, Trondheim, Norway, pp. 34–47. [Google Scholar]
  • Jana A.K. (2017) A thermally coupled dividing tower batch rectifier: Energy consumption and cost, Appl. Therm. Eng. 119, 610–616. [CrossRef] [Google Scholar]
  • Kamath R.S., Grossmann I.E., Biegler L.T. (2010) Aggregate models based on improved group methods for simulation and optimization of distillation systems, Comput. Chem. Eng. 34, 8, 1312–1319. [CrossRef] [Google Scholar]
  • Kiran B., Jana A.K. (2015) Introducing vapor recompression mechanism in heat-integrated distillation column: Impact of internal energy driven intermediate and bottom reboiler, AIChE J. 61, 1, 118–131. [CrossRef] [Google Scholar]
  • Manan Z.A., Mohd Nawi W.N.R., Wan Alwi S.R., Klemeš J.J. (2017) Advances in process integration research for CO2 emission reduction – A review, J. Clean. Prod. 167, 1–13. [CrossRef] [Google Scholar]
  • Morgan S.W. (1992) Use process integration to improve process designs and the design process, Chem. Eng. Prog. 88, 9, 62–68. [Google Scholar]
  • Natori Y. (1992) Managing the implementation of pinch technology in a large company, IEA Workshop on Process Integration, Gottenburg, Sweden. [Google Scholar]
  • Ochoa-Estopier L.M., Jobson M., Smith R. (2014) The use of reduced models for design and optimisation of heat-integrated crude oil distillation systems, Energy 75, 5–13. [CrossRef] [Google Scholar]
  • Peng D.-Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 1, 59–64. [CrossRef] [Google Scholar]
  • Polley G., Heggs P. (1999) Don’t let the pinch pinch you, Chem. Eng. Prog. 95, 12, 27–36. [Google Scholar]
  • Portha J.-F., Jaubert J.-N., Louret S., Pons M.-N. (2010) Life cycle assessment applied to naphtha catalytic reforming, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 65, 5, 793–805. [CrossRef] [Google Scholar]
  • Rossiter A., Spriggs H.D., Klee H. Jr (1993) Apply process integration to waste minimization, Chem. Eng. Prog. (United States), 89 1. [Google Scholar]
  • Shafiee M., Jalali A., Mohammadi A.H., Amirhamzeh M. (2018) Simulation and energy optimization of the stabilizer tower of a pyrolysis gasoline hydrogenation unit, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 14, 1714–1720. [CrossRef] [Google Scholar]
  • Skiborowski M., Recker S., Marquardt W. (2018) Shortcut-based optimization of distillation-based processes by a novel reformulation of the feed angle method, Chem. Eng. Res. Des. 132, 135–148. [CrossRef] [Google Scholar]
  • Snoek J., Tjoe T. (1992) Process integration experience in a large company, IEA Workshop on Process Integration, Gottenburg, Sweden. [Google Scholar]
  • Tarjani A.J., Toth A.J., Nagy T., Haaz E., Valentinyi N., Andre A., Fozer D., Mizsey P. (2018) Thermodynamic and exergy analysis of energy-integrated distillation technologies focusing on dividing-wall columns with upper and lower partitions, Ind. Eng. Chem. Res. 57, 10, 3678–3684. [CrossRef] [Google Scholar]
  • Tjoe T.N., Linnhoff B. (1986) Using pinch technology for process retrofit, Chem. Eng. 93, 8, 47–60. [Google Scholar]
  • Umeda T., Niida K., Shiroko K. (1979) A thermodynamic approach to heat integration in distillation systems, AIChE J. 25, 3, 423–429. [CrossRef] [Google Scholar]
  • Yoda H., Shibuya H. (1995) An approach to minimum energy plant design incorporating pinch technology and state-of-the-art equipment, National Petroleum Refiners Association, Washington, DC (United States). [Google Scholar]
  • Zhao H., Ierapetritou M.G., Shahn N.K., Rong G. (2017) Integrated model of refining and petrochemical plant for enterprise-wide optimization, Comput. Chem. Eng. 97, 194–207. [CrossRef] [Google Scholar]
  • Zheng H., Li Y., Xu C. (2017) Control of Highly Heat-Integrated Energy-Efficient Extractive Distillation Processes, Ind. Eng. Chem. Res. 56, 19, 5618–5635. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.