Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numéro d'article 61
Nombre de pages 7
DOI https://doi.org/10.2516/ogst/2018070
Publié en ligne 28 novembre 2018
  • Amidpour M., Polley G. (1997) Application of problem decomposition in process integration, Chem. Eng. Res. Des 75, 1, 53–63. [CrossRef] [Google Scholar]
  • Avenier P., Bazer-Bachi D., Bazer-Bachi F., Chizallet C., Deleau F., Diehl F., Gornay J., Lemaire É., Moizan-Basle V., Plais C., Raybaud P., Richard F., Lacombe S. (2016) Catalytic reforming: Methodology and process development for a constant optimisation and performance enhancement, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 3, 41. [CrossRef] [Google Scholar]
  • Biegler L.T., Grossmann I.E., Westerberg A.W. (1997) Systematic methods for chemical process design, N. p., United States, Web. [Google Scholar]
  • Chang H., Shih C.M. (2005) Simulation and optimization for power plant flue gas CO2 absorption-stripping systems, Sep. Sci. Technol. 40, 4, 877–909. [CrossRef] [Google Scholar]
  • Furman K.C., El-Bakry A.S., Song J.H. (2017) Optimization in the oil and gas industry, Optim. Eng. Springer, US 18, 1, 1–2. [CrossRef] [Google Scholar]
  • Geankoplis C.J., Hersel A.A., Lepek D.H. (2018) Transport processes and separation process principles, Prentice Hall, New Jersey, USA. [Google Scholar]
  • Gerberich H.R., Seaman G.C. (1994) Formaldehyde: Encyclopedia of chemical technology, Vol. 11, Wiley, New York, USA. [Google Scholar]
  • Gong H.-F., Chen Z.S., Zhu Q.X., He Y.L. (2017) A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries, Appl. Energy 197, 405–415. [CrossRef] [Google Scholar]
  • Gundersen T. (2000) A process integration primer – Implementing agreement on process integration, International Energy Agency, SINTEF Energy Research, Trondheim, Norway, pp. 34–47. [Google Scholar]
  • Jana A.K. (2017) A thermally coupled dividing tower batch rectifier: Energy consumption and cost, Appl. Therm. Eng. 119, 610–616. [CrossRef] [Google Scholar]
  • Kamath R.S., Grossmann I.E., Biegler L.T. (2010) Aggregate models based on improved group methods for simulation and optimization of distillation systems, Comput. Chem. Eng. 34, 8, 1312–1319. [CrossRef] [Google Scholar]
  • Kiran B., Jana A.K. (2015) Introducing vapor recompression mechanism in heat-integrated distillation column: Impact of internal energy driven intermediate and bottom reboiler, AIChE J. 61, 1, 118–131. [CrossRef] [Google Scholar]
  • Manan Z.A., Mohd Nawi W.N.R., Wan Alwi S.R., Klemeš J.J. (2017) Advances in process integration research for CO2 emission reduction – A review, J. Clean. Prod. 167, 1–13. [CrossRef] [Google Scholar]
  • Morgan S.W. (1992) Use process integration to improve process designs and the design process, Chem. Eng. Prog. 88, 9, 62–68. [Google Scholar]
  • Natori Y. (1992) Managing the implementation of pinch technology in a large company, IEA Workshop on Process Integration, Gottenburg, Sweden. [Google Scholar]
  • Ochoa-Estopier L.M., Jobson M., Smith R. (2014) The use of reduced models for design and optimisation of heat-integrated crude oil distillation systems, Energy 75, 5–13. [CrossRef] [Google Scholar]
  • Peng D.-Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 1, 59–64. [CrossRef] [Google Scholar]
  • Polley G., Heggs P. (1999) Don’t let the pinch pinch you, Chem. Eng. Prog. 95, 12, 27–36. [Google Scholar]
  • Portha J.-F., Jaubert J.-N., Louret S., Pons M.-N. (2010) Life cycle assessment applied to naphtha catalytic reforming, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 65, 5, 793–805. [CrossRef] [Google Scholar]
  • Rossiter A., Spriggs H.D., Klee H. Jr (1993) Apply process integration to waste minimization, Chem. Eng. Prog. (United States), 89 1. [Google Scholar]
  • Shafiee M., Jalali A., Mohammadi A.H., Amirhamzeh M. (2018) Simulation and energy optimization of the stabilizer tower of a pyrolysis gasoline hydrogenation unit, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 14, 1714–1720. [CrossRef] [Google Scholar]
  • Skiborowski M., Recker S., Marquardt W. (2018) Shortcut-based optimization of distillation-based processes by a novel reformulation of the feed angle method, Chem. Eng. Res. Des. 132, 135–148. [CrossRef] [Google Scholar]
  • Snoek J., Tjoe T. (1992) Process integration experience in a large company, IEA Workshop on Process Integration, Gottenburg, Sweden. [Google Scholar]
  • Tarjani A.J., Toth A.J., Nagy T., Haaz E., Valentinyi N., Andre A., Fozer D., Mizsey P. (2018) Thermodynamic and exergy analysis of energy-integrated distillation technologies focusing on dividing-wall columns with upper and lower partitions, Ind. Eng. Chem. Res. 57, 10, 3678–3684. [CrossRef] [Google Scholar]
  • Tjoe T.N., Linnhoff B. (1986) Using pinch technology for process retrofit, Chem. Eng. 93, 8, 47–60. [Google Scholar]
  • Umeda T., Niida K., Shiroko K. (1979) A thermodynamic approach to heat integration in distillation systems, AIChE J. 25, 3, 423–429. [CrossRef] [Google Scholar]
  • Yoda H., Shibuya H. (1995) An approach to minimum energy plant design incorporating pinch technology and state-of-the-art equipment, National Petroleum Refiners Association, Washington, DC (United States). [Google Scholar]
  • Zhao H., Ierapetritou M.G., Shahn N.K., Rong G. (2017) Integrated model of refining and petrochemical plant for enterprise-wide optimization, Comput. Chem. Eng. 97, 194–207. [CrossRef] [Google Scholar]
  • Zheng H., Li Y., Xu C. (2017) Control of Highly Heat-Integrated Energy-Efficient Extractive Distillation Processes, Ind. Eng. Chem. Res. 56, 19, 5618–5635. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.