Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 60
Number of page(s) 9
Published online 20 November 2018
  • Wang J.M., Liu S.F., Li J., Zhang Y.F., Gao L. (2011) Characteristics and causes of Mesozoic reservoirs with extra-low permeability and high water cut in northern Shaanxi, Petrol. Explor. Dev. 38, 5, 583–588. [CrossRef] [Google Scholar]
  • Daopin L. (1998) Concept of low permeability oil field and its distribution in China, Petroleum Industry Press, Beijing, pp. 1–10. [Google Scholar]
  • Jing Z. (2011) Development techniques of horizontal wells in low permeability reservoirs, Jilin Oilfield, Petrol. Explor. Dev. 38, 5, 594–599. [CrossRef] [Google Scholar]
  • Yingsong L., Jinbao J., Fengcheng S., et al. (2007) Exploding technology and low permeability reservoir improvement, Drill. Prod. Tech. 30, 5, 48–52. [Google Scholar]
  • Hongen Dou., Yang Yang. (2012) Further understanding on fluid flowthrough multi-porous media in low permeability reservoirs, Petrol. Explor. Dev. 39, 5, 633–640. [Google Scholar]
  • Naugol’nykh Kh.A., Roy N.A. (1971) Spark discharges in water, Nauka, Moscow, Russia (translation: Foreign Technology Division, Wright-Patterson AFB, OH, 1974). [Google Scholar]
  • Krasik Y.E., Fedotov A., Sheftman D., Efimov S., Sayapin A., Gurovich V.T., Veksler D., Bazalitski G., Gleizer S., Grinenko A., Oreshkin V.I. (2010) Underwater electrical wire explosion, Plasma Source. Sci. Technol. 19, 3, 034020. [CrossRef] [Google Scholar]
  • Stelmashuk V., Hoffer P. (2012) Shock waves generated by an electrical discharge on composite electrode immersed in water with different conductivities, IEEE Trans. Plasma Sci. 40, 1907–1912. [CrossRef] [Google Scholar]
  • Aici Q., Yongmin Z., Bin K., et al. (2012) Application of high power pulse technology in unconventional gas development, Proceeding for 2012 CAE/NEA Energy Forum, Coal Industry Press, Beijing, China, pp. 1112–1115. [Google Scholar]
  • Qiu A., Zeng Z., Zhang Q., et al. (2009) Chinese electrical engineering canon, chapter 7, pulsed power technology foundation, China Electric Power Press, Beijing, China. [Google Scholar]
  • Zhang Y., Qiu A., Zhou H., et al. (2016) Research progress in electrical explosion shockwave technology for developing fossil energy, High Voltage Eng. 42, 4, 1009–1017. [Google Scholar]
  • Yibo W. (2012) Theoretical and experimental study of the underwater plasma acoustic source, National University of Defense Technology, Changsha, China. [Google Scholar]
  • Chen J.Q., Wei Chunxia., Deng T., et al. (2007) Studies on mechanical mechanism about stone comminution and tissue trauma in extracorporeal shock wave lithotripsy, Adv. Mech. 37, 4, 590–600. [Google Scholar]
  • Lei Zhang. (1999) Electrohydraulic machining technology and its application, Mechanics 26, 4, 48–50. [Google Scholar]
  • Wang X.R., Yuan Y.Q., Du H.T., et al. (2005) Application of shock wave plug-removing measure in low-mid permeability reservoir, Offshore Oil 25, 2, 68–71. [Google Scholar]
  • Ushakov V.Y., Klimkin V.F.V.C., Korobeynikov S.M. (2007) Impulse breakdown of liquids, Springer Science and Business Media, Tomsk, Russia. [Google Scholar]
  • Maurel O., Reess T., Matallah M., et al. (2010) Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar, Cem. Concr. Res. 40, 12, 1631–1638. [CrossRef] [Google Scholar]
  • Chen W., Maurel O., Reess T., et al. (2012) Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by pulsed arc electrohydraulic discharges, J. Petrol. Sci. Eng. (88/89), 67–74. [Google Scholar]
  • Qin Z.G. (2000) High voltage pulse discharge and its application, Beijing University of Technology Press, Beijing, China. [Google Scholar]
  • Lu X.P., Pan Y., Zhang H. (2002) The electrical and acoustical characteristics of pulsed discharge in water, Acta Phys. Sin. 51, 7, 1549–1553. [Google Scholar]
  • Lu X.P., Pan Y., Zhang H.H., et al. (2002) A study on the characteristic of plasma and bubble break process of pulsed discharge in water, Acta Phys. Sin. 51, 8, 1768–1772. [Google Scholar]
  • Lu X.P. (2001) Theoretical and experimental research on electrohydraulic pulse plasma, Huazhong University of Science and Technology, Wuhan, China. [Google Scholar]
  • Zhicheng Zhang. (2013) Rock fragmentation by pulsed high voltage discharge and drilling equipment development, Zhejiang University, Hangzhou, China. [Google Scholar]
  • Zhang C.X. (2005) The propulsion effect caused by exploding wire in water, Harbin University of Science and Technology, Harbin, China. [Google Scholar]
  • Sun F.J., Zeng Z.Z., Qiu Y.C., et al. (1999) Pulse high current power supply used for dredging oil and water wells, High Voltage Eng. 25, 2, 47–49. [Google Scholar]
  • Hatfield L.L., Kristiansen M., Lojewski D. (1998) High voltage water breakdown studies, DSWA-TR-97-30, Pulsed Power Lab, Texas Tech University, Lubbock, Germany. [Google Scholar]
  • Zhou H., Han R., Liu Q., et al. (2015) Generation of electrohydraulic shockwaves by plasma-ignited energetic materials: II. Influence of wire configuration and stored energy, IEEE Trans. Plasma Sci. 43, 12, 4009–4016. [CrossRef] [Google Scholar]
  • Efimov S., Gurovich V.T., Bazalitski G., et al. (2009) Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion, J. Appl. Phys. 106, 7, 73308. [CrossRef] [Google Scholar]
  • Sunka P. (2001) Pulse electrical discharges in water and their applications, Phys. Plasmas 8, 5, 2587. [CrossRef] [Google Scholar]
  • Krasik Y.E., Grinenko A., Sayapin A., et al. (2008) Underwater electrical wire explosion and its applications, IEEE Trans. Plasma Sci. 36, 2, 423–434. [CrossRef] [Google Scholar]
  • Krasik Y.E., Fedotov A., Sheftman D., et al. (2010) Underwater electrical wire explosion, Plasma Source Sci. Technol. 19, 3, 951–956. [Google Scholar]
  • Grinenko A., Gurovich V.T., Krasik Y.E., et al. (2004) Analysis of shock wave measurements in water by a piezoelectric pressure probe, Rev. Sci. Instrum. 75, 1, 240. [CrossRef] [Google Scholar]
  • Pikuz S.A., Tkachenko S.I., Romanova V.M., et al. (2006) Maximum energy deposition during resistive stage and overvoltage at current driven nanosecond wire explosion, IEEE Trans. Plasma Sci. 34, 5, 2330–2335. [CrossRef] [Google Scholar]
  • Oshita D., Hosseini S.H.R., Miyamoto Y., et al. (2013) Study of underwater shock waves and cavitation bubbles generated by pulsed electric discharges, IEEE Trans. Dielectr. Electr. Insul. 20, 4, 1273–1278. [CrossRef] [Google Scholar]
  • Zhou H.B., Han R.Y., Wu J.W., et al. (2015) Model and simulation study of discharge channel during underwater Cu wire explosion, High Voltage Eng. 41, 9, 2943–2949. [Google Scholar]
  • Han R., Zhou H., Liu Q., et al. (2015) Generation of electrohydraulic shockwaves by plasma-ignited energetic materials: I. fundamental mechanisms and processes, IEEE Trans. Plasma Sci. 43, 12, 3999–4008. [CrossRef] [Google Scholar]
  • Zhou H., Zhang Y., Li H., et al. (2015) Generation of electrohydraulic shockwaves by plasma-ignited energetic materials: III. Shock wave characteristics with three discharge loads, IEEE Trans. Plasma Sci. 43, 12, 4017–4023. [CrossRef] [Google Scholar]
  • Zhang X.B., Yuan Y.X., et al. (2004) Numerical simulation of plasma ignition of energetic materials, J. Nanjing Univ. Sci. Technol. 28, 3, 295–298. [Google Scholar]
  • Li X., Li R., Jia S., et al. (2012) Interaction features of different propellants under plasma impingement, J. Appl. Sci. 112, 6, 3303–3310. [Google Scholar]
  • Xingwen L., Li R., Shenli J., et al. (2013) Study on the characteristics of different plasma ignition schemes, IEEE Trans. Plasma Sci. 41, 1, 214–218. [CrossRef] [Google Scholar]
  • Baxитoв Г.Г. (1993) Gas exploitation in stratum by using physical field, Petroleum Industry Press, Beijing, China. [Google Scholar]
  • Jiang Y.D., Xian X.F., Yi J., et al. (2008) Experimental and mechanical on the features of ultrasonic vibration stimulating the desorption of methane in coal, J. China Coal Soc. 33, 6, 675–680. [Google Scholar]
  • Yu C., Pandolfi A., Ortiz M., et al. (2002) Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates, Int. J. Solids Struct. 39, 25, 6135–6157. [CrossRef] [Google Scholar]
  • Robert A.G. (2010) Solid under high-pressure shock compression, Science Press, Beijing, China. [Google Scholar]
  • Tucker T.J. (1972) Explosive initiators, Proceedings of the 12th Annual Symposium of the New Mexico Section of the ASME, Albuquerque, New Mexico, USA. [CrossRef] [Google Scholar]
  • Varosh R. (1996) Electric detonators: EBW and EFI, Propellants, Explosives, Pyrotechnics 21, 3, 150–154. [CrossRef] [Google Scholar]
  • Taylor M.J. (2002) Plasma propellant interactions in an electrothermal-chemical gun, Cranfield University, Cranfield, Bedfordshire, UK. [Google Scholar]
  • Porwitzky A.J., Keidar M., Boyd I.D. (2007) Modeling of the plasma-propellant interaction, IEEE Trans. Magn. 43, 1, 313–337. [CrossRef] [Google Scholar]
  • Kappen K., Bauder U.H. (2001) Calculation of plasma radiation transport fordescription of propellant ignition and simulation of interior ballistics inETC guns, IEEE Trans. Magn. 37, 1, 169–172. [CrossRef] [Google Scholar]
  • Efimov S., Gilburd L., Fedotov G.A., et al. (2012) Aluminum micro-particles combustion ignited by underwater electrical wire explosion, Shock Waves 22, 3, 207–214. [CrossRef] [Google Scholar]
  • Li X.W., Chao Y.C., Wu J., et al. (2015) One-dimensional simulation for shock waves generated by underwater electrical wire explosion, J. Xi’an Jiaotong Univ. 49, 4, 1–5, 52. [Google Scholar]
  • Chao Y.C., Han R.Y., Li X.W., et al. (2014) Zero-dimensional simulation of discharge channel properties during underwater electrical wire explosion, High Voltage Eng. 40, 10, 3112–3118. [Google Scholar]
  • Liu Q., Ding W., Zhou H., et al. (2015) A novel strain measurement system in strong electromagnetic field, IEEE Trans. Plasma Sci. 43, 10, 3562–3567. [CrossRef] [Google Scholar]
  • Li X., Chao Y., Wu J., et al. (2015) Study of the shock waves characteristics generated by underwater electrical wire explosion, J. Appl. Phys. 118, 2, 23301. [CrossRef] [Google Scholar]
  • Wu J.W., Ding W.D., Han R.Y., et al. (2014) Electrode erosion of repetitive long-life gas spark switch with large current load in airtight chamber, High Voltage Eng. 40, 10, 3235–3242. [Google Scholar]
  • Peng Y.J., Ye Y.Q. (2015) Research progress of ‘hot-spot’ theory in energetic materials initiation, Chemistry 78, 8, 693–701. [Google Scholar]
  • Pagoria P.F., Lee G.S., Mitchell A.R., Schmidt R.D. (2002) A review of energetic materials synthesis, Thermochim. Acta 384, 1, 187–204. [CrossRef] [Google Scholar]
  • Wu T.F., Ding W., Li Y.C., et al. (2008) Blasting materials and blasting technique, National Defence Industry Press, Beijing, China. [Google Scholar]
  • Bourne N.K., Milne A.M. (2003) The temperature of a shock-collapsed cavity, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 1851–1861. [CrossRef] [Google Scholar]
  • Mader C.L. (1965) Initiation of detonation by the interaction of shocks with density discontinuities, Phys. Fluids (1958–1988) 8, 10, 1811–1816. [CrossRef] [Google Scholar]
  • Cai Y., Zhao F.P., An Q., Wu H.A., Goddard W.A., Luo S.N. (2013) Shock response of single crystal and nanocrystalline pentaerythritoltetranitrate: Implications to hotspot formation in energetic materials, J. Chem. Phys. 139, 16, 164704. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.