Numerical methods and HPC
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numerical methods and HPC
Article Number 73
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2018033
Published online 11 December 2018
  • Niemi A., Bear J., Bensabat J. (2017) Geological storage of CO2 in deep saline formations, Springer. [CrossRef] [Google Scholar]
  • Zhang F., Yeh G.T., Parker J.C. (2012) Groundwater reactive transport models, Bentham e-books [CrossRef] [Google Scholar]
  • Steefel C.I., Appelo C.A.J., Arora B., Jacques D., Kalbacher T., Kolditz O., Lagneau V., Lichtner P.C., Mayer K.U., Meeussen J.C.L., Molins S., Moulton D., Shao H., Šimunek J., Spycher N., Yabusaki S.B., Yeh G.T. (2015) Reactive transport codes for subsurface environmental simulation, Comput. Geosci. 19, 445–478. [Google Scholar]
  • Jiang X. (2011) A review of physical modelling and numerical simulation of long-term geological storage of CO2, Appl. Energy 88, 3557–3566. [Google Scholar]
  • Intergovernmental Panel on Climate Change (IPCC). (2005) IPCC special report on carbon dioxide capture and storage, in: Metz B., Davidson O., de Coninck H.C., Loos M., Loos M., Meyer L.A. (eds.), IPCC special report on carbon dioxide capture and storage, Cambridge University Press. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. [Google Scholar]
  • Al-Khoury R., Bundschuh J. (2014) Computational models for CO2 geo-sequestration and compressed air energy storage, Sustainable Energy Developments, CRC Press. [CrossRef] [Google Scholar]
  • Bear J., Carrera J. (2017) Mathematical modeling of CO2 storage in a geological formation, Springer. [Google Scholar]
  • Haeberlein F. (2011) Time space domain decomposition methods for reactive transport – application to CO2 geological storage, PhD Thesis, Université Paris-Nord – Paris XIII. [Google Scholar]
  • Lagneau V., Pipart A., Catalette H. (2005) Reactive transport modelling of CO2 sequestration in deep saline aquifers, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 60, 231–247. [CrossRef] [Google Scholar]
  • Haeberlein F., Michel A., Halpern L.(2009) A test case for multi-species reactive-transport in heterogeneous porous media applied to CO2 geological storage. https://www.ljll.math.upmc.fr/mcparis09/Files/haeberlein_poster.pdf. [Google Scholar]
  • Ahmad N., Wörman A., Bottacin-Busolin A., Sanchez-Vila X. (2015) Reactive transport modeling of leaking CO2-saturated brine along a fractured pathway, Int. J. Greenh. Gas Con. 42, 672–689. [CrossRef] [Google Scholar]
  • Pool M., Carrera J., Vilarrasa V., Silva O., Ayora C. (2013) Dynamics and design of systems for geological storage of dissolved CO2, Adv. Water Resour. 62, 533–542. [Google Scholar]
  • Ahmad N., Wörman A., Sanchez-Vila X., Jarsjö J., Bottacin-Busolin A., Hellevang H. (2016) Injection of CO2 saturated brine in geological reservoir: A way to enhanced storage safety, Int. J. Greenh. Gas Con. 54, 129–144. [CrossRef] [Google Scholar]
  • Nicot J.P., Hosseini S.A., Solano S.V. (2011) Are single-phase flow numerical models sufficient to estimate pressure distribution in CO2 sequestration projects?, Energy Procedia 4, 3919–3926. [Google Scholar]
  • Audigane P., Gaus I., Czernichowski-Lauriol I., Pruess K., Xu T. (2007) Two-dimensional reactive transport modelling of CO2 injection in a saline aquifer at the Sleipner site, North Sea, Am. J. Sci. 307, 974–1008. [Google Scholar]
  • Fan Y., Durlofsky L.J., Tchelepi H.A. (2012) A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO2 storage simulations, Adv. Water Resour. 42, 47–61. [Google Scholar]
  • Leal A.M.M., Blunt M.J., LaForce T.C. (2013) A robust and efficient numerical method for multiphase equilibrium calculations: Application to CO2-brine-rock systems at high temperatures, pressures and salinities, Adv. Water Resour. 62, 409–430. [Google Scholar]
  • Nghiem L., Sammon P., Grabenstetter J., Ohkuma H. (2004) Modeling CO2 storage in aquifers with a fully-coupled geochemical eos compositional simulator, SPE - DOE Improved Oil Recovery Symposium Proceedings. [Google Scholar]
  • Nghiem L., Shrivastava V., Kohse B. (2011) Modeling aqueous phase behavior and chemical reactions in compositional simulation, Society of Petroleum Engineers - SPE Reservoir Simulation Symposium 1, 454–468. [Google Scholar]
  • Saaltink M., Vilarrasa V., De Gaspari F., Silva O., Carrera J., Rötting T.S. (2013) A method for incorporating equilibrium chemical reactions into multiphase flow models for CO2 storage, Adv. Water Resour. 62, 431–441. [Google Scholar]
  • Thibeau S., Nghiem L.X., Ohkuma H. (2007) A modeling study of the role of selected minerals in enhancing CO2 mineralization during CO2 aquifer storage, Proceedings - SPE Annual Technical Conference and Exhibition 2, 906–922. [Google Scholar]
  • Huet B.M., Prevost J.H., Scherer G.W. (2010) Quantitative reactive transport modeling of portland cement in CO2-saturated water, Int. J. Greenh. Gas Con. 4, 561–574. [CrossRef] [Google Scholar]
  • Jacquemet N., Pironon J., Lagneau V., Saint-Marc J. (2012) Armouring of well cement in H2S-CO2 saturated brine by calcite coating - experiments and numerical modelling, Appl. Geochem. 27, 782–795. [Google Scholar]
  • Berner U., Kulik D.A., Kosakowski G. (2013) Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste, Phys. Chem. Earth 64, 46–56. [CrossRef] [Google Scholar]
  • Mon A., Samper J., Montenegro L., Naves A., Fernández J. (2017) Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a hlw repository in clay, J. Contam. Hydrol. 197, 1–16. [CrossRef] [PubMed] [Google Scholar]
  • Sedighi M., Thomas H.R., Al Masum S., Vardon P.J., Nicholson D., Chen Q. (2015) Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer, Geol. Soc. Spec. Publ. 415, 189–201. [Google Scholar]
  • Xu T., Senger R., Finsterle S. (2008) Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects, Appl. Geochem. 23, 3423–3433. [Google Scholar]
  • Xu T., Senger R., Finsterle S. (2011) Bentonite alteration due to thermal-hydro-chemical processes during the early thermal period in a nuclear waste repository, Nucl. Technol. 174, 438–451. [Google Scholar]
  • Shao H., Dmytrieva S.V., Kolditz O., Kulik D.A., Pfingsten W., Kosakowski G. (2009) Modeling reactive transport in non-ideal aqueous-solid solution system, Appl. Geochem. 24, 1287–1300. [Google Scholar]
  • Spycher N.F., Sonnenthal E.L., Apps J.A. (2003) Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at yucca mountain, Nevada, J. Contam. Hydrol. 62, 653–673. [CrossRef] [PubMed] [Google Scholar]
  • Viswanathan H.S., Robinson B.A., Valocchi A.J., Triay I.R. (1998) A reactive transport model of neptunium migration from the potential repository at yucca mountain, J. Hydrol. 209, 251–280. [CrossRef] [Google Scholar]
  • De Windt L., Pellegrini D., Van Der Lee J. (2004) Coupled modeling of cement/claystone interactions and radionuclide migration, J. Contam. Hydrol. 68, 165–182. [CrossRef] [PubMed] [Google Scholar]
  • Lichtner P.C., Yabusaki S., Pruess K., Steefel C.I. (2004) Role of competitive cation exchange on chromatographic displacement of cesium in the vadose zone beneath the hanford s/sx tank farm, Vadose Zone Journal 3, 203–219. [CrossRef] [Google Scholar]
  • Steefel C.I., Carroll S., Zhao P., Roberts S. (2003) Cesium migration in hanford sediment: A multi-site cation exchange model based on laboratory transport experiments, J. Contam. Hydrol. 67, 219–246. [CrossRef] [PubMed] [Google Scholar]
  • Appelo C.A.J., Postma D. (2005) Geochemistry, Groundwater and Pollution, 2nd edn., Taylor & Francis. [CrossRef] [Google Scholar]
  • Bear J., Cheng A.H.-D. (2010) Modeling groundwater flow and contaminant transport, Springer. [CrossRef] [Google Scholar]
  • Zheng C., Bennett G.D. (2002) Applied contaminant transport modeling, John Wiley and Sons, New York. [Google Scholar]
  • Lichtner P.C. (1985) Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta 49, 779–800. [Google Scholar]
  • Molins S., Carrera J., Ayora C., Saaltink M.W. (2004) A formulation for decoupling components in reactive transport problems, Water Resour. Res. 40, 1–13. [Google Scholar]
  • Lasaga A.C., Soler J.M., Ganor J., Burch T.E., Nagy K.L. (1994) Chemical weathering rate laws and global geochemical cycles, Geochim. Cosmochim. Acta 58, 2361–2386. [Google Scholar]
  • Steefel C.I., MacQuarrie K.T.B. (1996) Approaches to modeling of reactive transport in porous media, Rev. Mineral. 34, 82–129. [Google Scholar]
  • Yeh G.T., Tripathi V.S. (1991) A model for simulating transport of reactive multispecies components: Model development and demonstration, Water Resour. Res. 27, 3075–3094. [Google Scholar]
  • Barry D.A., Miller C.T., Culligan-Hensley P.J. (1996) Temporal discretisation errors in non-iterative split-operator approaches to solving chemical reaction/groundwater transport models, J. Contam. Hydrol. 22, 1–17. [Google Scholar]
  • Valocchi A.J., Malmstead M. (1992) Accuracy of operator splitting for advection-dispersion-reaction problems, Water Resour. Res. 28, 1471–1476. [Google Scholar]
  • Carrayrou J., Kern M., Knabner P. (2010) Reactive transport benchmark of MoMaS, Comput. Geosci. 14, 385–392. [Google Scholar]
  • Carrayrou J. (2010) Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY, Comput. Geosci. 14, 393–403. [Google Scholar]
  • Lagneau V., van der Lee J. (2010) HYTEC results of the MoMaS reactive transport benchmark, Comput. Geosci. 14, 435–449. [Google Scholar]
  • Amir L., Kern M. (2010) A global method for coupling transport with chemistry in heterogeneous porous media, Comput. Geosci. 14, 465–481. [Google Scholar]
  • de Dieuleveult C., Erhel J. (2010) A global approach to reactive transport: Application to the MoMaS benchmark, Comput. Geosci. 14, 451–464. [Google Scholar]
  • Hoffmann J., Kräutle S., Knabner P. (2010) A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem, Comput. Geosci. 14, 421–433. [Google Scholar]
  • Mayer K.U., MacQuarrie K.T.B. (2010) Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results, Comput. Geosci. 14, 405–419. [Google Scholar]
  • Erhel J., Sabit S. (2017) Analysis of a global reactive transport model and results for the MoMaS benchmark, Math. Comput. Simulat. 137, 286–298. [CrossRef] [Google Scholar]
  • Kräutle S., Knabner P. (2005) A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media, Water Resour. Res. 41, 1–17. [Google Scholar]
  • Kräutle S., Knabner P. (2007) A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res. 43. [Google Scholar]
  • Carrayrou J., Hoffmann J., Knabner P., Kräutle S., de Dieuleveult C., Erhel J., Van der Lee J., Lagneau V., Mayer K.U., MacQuarrie K.T.B. (2010) Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems – the MoMaS benchmark case, Comput. Geosci. 14, 483–502. [Google Scholar]
  • Ahusborde E., Kern M., Vostrikov V. (2015) Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO2, ESAIM: Proc. Surveys 50, 21–39. [CrossRef] [Google Scholar]
  • Ahusborde E., El Ossmani M. (2017) A sequential approach for numerical simulation of two-phase multicomponent flow with reactive transport in porous media, Math. Comput. Simulat. 137, 71–89. [CrossRef] [Google Scholar]
  • DuMuX (2018) DUNE for multi-Phase, Component, Scale, Physics, … flow and transport in porous media, https://www.dumux.org, last accessed February 1, 2018. [Google Scholar]
  • Flemisch B., Darcis M., Erbertseder K., Faigle B., Lauser A., Mosthaf K., Muthing S., Nuske P., Tatomir A., Wolf M., Helmig R. (2011) DuMuX: DUNE for multi-{Phase, Component, Scale, Physics, …} flow and transport in porous media, Adv. Water Resour. 34, 1102–1112. [Google Scholar]
  • Helmig R. (1997) Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems, Springer. [Google Scholar]
  • GSL - GNU Scientific LibraryMultidimensional Root-Finding. https://www.gnu.org/software/gsl/, Last accessed February 1, 2018. [Google Scholar]
  • Ahusborde E., Amaziane B., El Ossmani M. (2017) Finite volume scheme for coupling two-phase flow with reactive transport in porous media, Finite volumes for complex applications VIII-hyperbolic, elliptic and parabolic problems, Springer Proceedings in Mathematics and Statistics 200, 407–415. [Google Scholar]
  • Kirkham D.H., Helgeson H.C., Flowers G.C. (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 KB, Am. J. Sci. 281, 1249–1516. [Google Scholar]
  • Bethke C., Farrell B., Yeakel S., Yeakel S. (2018) The Geochemist’s Workbench® Release 12 – GWB Essentials Guide. https://www.gwb.com/pdf/GWB12/GWBessentials.pdf. [Google Scholar]
  • Spycher N., Pruess K. (2005) CO2-H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100 °C and up to 600 bar, Geochim. et Cosmochim. Acta 69, 3309–3320. [CrossRef] [Google Scholar]
  • Wolery T.J. (1992) EQ3/6 software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 8.0), Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I. [CrossRef] [Google Scholar]
  • Xu B., Nagashima K., DeSimone J.M., Johnson C.S. (2003) Diffusion of water in liquid and supercritical carbon dioxide: an NMR study, J. Phys. Chem. A 107, 1–3. [Google Scholar]
  • Adams J.J., Bachu S. (2002) Equations of state for basin geofluids: algorithm review and intercomparison for brines, Geofluids 2, 257–271. [CrossRef] [Google Scholar]
  • Span R., Wagner W. (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25, 1–88. [Google Scholar]
  • Fenghour A., Wakeham W.A., Vesovic V. (1998) The viscosity of carbon dioxide, J. Phys. Chem. Ref. Data 27, 31–44. [Google Scholar]
  • Hammond G.E., Lichtner P.C., Lu C., Mills R.T. (2012) PFLOTRAN: Reactive flow & transport code for use on laptops to leadership-class supercomputers, Groundwater Reactive Transport Models 141–159. [CrossRef] [Google Scholar]
  • Hammond G.E., Lichtner P.C., Mills R.T. (2014) Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN, Water Resour. Res. 50, 208–228. [Google Scholar]
  • Beisman J.J., Maxwell R.M., Navarre-Sitchler A.K., Steefel C.I., Molins S. (2015) ParCrunchFlow: an efficient, parallel reactive transport simulation tool for physically and chemically heterogeneous saturated subsurface environments, Comput. Geosci. 19, 403–422. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.