Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 37
Number of page(s) 26
DOI https://doi.org/10.2516/ogst/2018025
Published online 02 October 2018
  • Alaskar M.N., Ames M.F., Connor S.T., Liu C., Cui Y., Li K., Horne R.N. (2012) Nanoparticle and microparticle flow in porous and fractured media – an experimental study, SPEJ, https://doi.org/10.2118/146752-PA. [Google Scholar]
  • Alaskar M.N. (2013) In-situ multifunctional nanosensors for fractured reservoir characterization, PhD Thesis, Stanford University, California. [Google Scholar]
  • Ayatollahi S., Zerafat M.M. (2012) Nanotechnology-assisted EOR techniques: New solutions to old challenges, in SPE International Oilfield Nanotechnology Conference and Exhibition, Society of Petroleum Engineers. SPE-157094-MS. [Google Scholar]
  • Ayela F., Cherief W., Colombet D., Ledoux G., Martini M., Mossaz S., Podbevsek D., Giu X.Y., Tillement O. (2017) Hydrodynamic cavitation through “labs on a chip”: from fundamentals to applications, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelle 72, 4, 19. [CrossRef] [Google Scholar]
  • Bennetzen M.V., Mogensen K. (2014) Novel applications of nanoparticles for future enhanced oil recovery, in International Petroleum Technology Conference, IPTC 17857. [Google Scholar]
  • Binks B.P., Whitby C.P. (2005) Nanoparticle silica-stabilised oilin-water emulsions: improving emulsion stability, Colloids Surf. A 253, 1–3, 105–115. [CrossRef] [Google Scholar]
  • Bolandtaba S.F., Skauge A., Mackay E. (2009) Pore scale modelling of linked polymer solution (LPS) – A new EOR process, in Paper presented at the 15th European Symposium on Improved Recovery, Paris, France. [Google Scholar]
  • Chengara A., Nikolov A.D., Wasan D.T., Trokhymchuk A., Henderson D. (2004) Spreading of nanofluids driven by the structural disjoining pressure gradient, J. Colloid Interface Sci. 280, 1, 192–201. [Google Scholar]
  • Cheraghian G., Hendraningrat L. (2016a) A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension, Int. Nano Lett. 6, 2, 129–138. [CrossRef] [Google Scholar]
  • Cheraghian G., Hendraningrat L. (2016b) A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding, Int. Nano Lett. 6, 1, 1–10. [CrossRef] [Google Scholar]
  • De Gennes P.G. (1985) Wetting: statics and dynamics, Rev. Mod. Phys. 57, 3, 827. [CrossRef] [Google Scholar]
  • Dickinson E. (2012) Use of nanoparticles and microparticles in the formation and stabilization of food emulsions, Trends Food Sci. Technol. 24, 1, 4–12. [CrossRef] [Google Scholar]
  • Ehtesabi H., Ahadian M.M., Taghikhani V. (2014) Enhanced heavy oil recovery using TiO2 nanoparticles: investigation of deposition during transport in core plug, Energy Fuels 29, 1, 1–8. [CrossRef] [Google Scholar]
  • El-Diasty A.I., Aly A.M. (2015) Understanding the mechanism of nanoparticles applications in enhanced oil recovery, in SPE North Africa Technical Conference and Exhibition, Cairo, Egypt, 14–16 September 2015, Society of Petroleum Engineers, Richardson, TX. SPE-175806-MS. [Google Scholar]
  • Esfandyari Bayat A., Junin R., Samsuri A., Piroozian A., Hokmabadi M. (2014) Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures, Energy Fuels 28, 10, 6255–6266. [CrossRef] [Google Scholar]
  • Friedheim J.E., Young S., De Stefano G., Lee J., Guo Q. (2012) Nanotechnology for Oilfield Applications – Hype or Reality? Society of Petroleum Engineers, https://doi.org/10.2118/157032-MS. [Google Scholar]
  • Frumkin A. (1938) On phenomena of wetting and adhesion of bubbles. I. Zhurnal Fizicheskoi Khimii, J. Phys. Chem. 12, 337–345, in Russian. [Google Scholar]
  • Haroun M.R., Alhassan S., Ansari A.A., Al Kindy N.A.M., Abou Sayed N., Abdul Kareem B.A., Sarma H.K. (2012) Smart nano-EOR process for Abu Dhabi carbonate reservoirs, Society of Petroleum Engineers, https://doi.org/10.2118/162386-MS. [Google Scholar]
  • Hendraningrat L., Shidong L., Torsaeter O. (2012) A glass micromodel experimental study of hydrophilic nanoparticles retention for EOR project, in SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition, Moscow, Russia, 16–18 October 2012, Society of Petroleum Engineers: Richardson, TX, SPE-159161-MS. [Google Scholar]
  • Hendraningrat L., Li S., Torsæter O. (2013) A coreflood investigation of nanofluid enhanced oil recovery, J. Petrol. Sci. Eng. 111, 128–138. [Google Scholar]
  • Hendraningrat L., Torsaeter O. (2014) Unlocking the potential of metal oxides nanoparticles to enhance the oil recovery, in Offshore Technology Conference-Asia. OTC-24696. [Google Scholar]
  • Hirasaki G.J. (1991) Wettability: fundamentals and surface forces, SPE Form. Eval. 6, 2, 217–226. [CrossRef] [Google Scholar]
  • Hu Z., Siddeequah M.A., Ghulam R., Paul W.J.G., Dongsheng W. (2016) Nanoparticle-assisted water-flooding in Berea sandstones, Energy Fuels 30, 4, 2791–2804. [Google Scholar]
  • Idogun A.K., Iyagba E.T., Ukwotije-Ikwut R.P., Aseminaso A. (2016) A review study of oil displacement mechanisms and challenges of nanoparticle enhanced oil recovery, in Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, SPE 184352. [Google Scholar]
  • Jiang R., Li K., Horne R. (2017) A mechanism study of wettability and interfacial tension for EOR using silica nanoparticles, in SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 187096. [Google Scholar]
  • Kanj M., Funk J., Al-Yousif Z. (2009) Nanofluid Coreflood Experiments in the Arab-D, in Presented at the 2009 SPE Saudi Arabia Technical Symposium and Exhibition, Al khobar, Saudi Arabia, May 09–11, SPE paper 126161. [Google Scholar]
  • Karimi A., Fakhroueian Z., Bahramian A., Pour Khiabani N., Darabad J.B., Azin R., Arya S. (2012) Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications, Energy Fuels 26, 2, 1028–1036. [Google Scholar]
  • Kashefi S., Lotfollahi M.N., Shahrabadi A. (2018) Investigation of asphaltene adsorption onto zeolite beta nanoparticles to reduce asphaltene deposition in a silica sand pack, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 2. [Google Scholar]
  • Kim S.J., Bang I.C., Buongiorno J., Hu L.W. (2007a) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat Mass Transfer 50, 19–20, 4105–4116. [CrossRef] [Google Scholar]
  • Kim S.J., Bang I.C., Buongiorno J., Hu L.W. (2007b) Study of pool boiling and critical heat flux enhancement in nanofluids, Bull. Pol. Acad. Sci.: Tech. Sci. 55, 211–216. [Google Scholar]
  • Kondiparty K., Nikolov A.D., Wasan D., Liu K.L. (2012) Dynamic spreading of nanofluids on solids. Part I: experimental, Langmuir 28, 41, 14618–14623. [CrossRef] [PubMed] [Google Scholar]
  • Lee Y., Du Z., Lin W., Yang Y. (2006) Monolayer behavior of silica particles at air/water interface: a comparison between chemical and physical modifications of surface, J. Colloid Interface Sci. 296, 1, 233–241. [CrossRef] [Google Scholar]
  • Li K., Hou B., Wang L., Cui Y. (2014) Application of carbon nanocatalysts in upgrading heavy crude oil assisted with microwave heating, Nano Lett. 14, 6, 3002–3008. [CrossRef] [PubMed] [Google Scholar]
  • Li Z., Kepkay P., Lee K., King T., Boufadel M.C., Venosa A.D. (2007) Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves, Mar. Pollut. Bull. 54, 7, 983–993. [CrossRef] [Google Scholar]
  • Lim S., Horiuchi H., Nikolov A.D., Wasan D. (2015) Nanofluids alter the surface wettability of solids, Langmuir 31, 21, 5827–5835. [CrossRef] [PubMed] [Google Scholar]
  • Luo D., Wang F., Alam M.K., Yu F., Mishra I.K., Bao J., Willson R.C., Ren Z. (2017) Colloidal stability of graphene-based amphiphilic janus nanosheet fluid, Chem. Mater. 29, 3454–3460. [CrossRef] [Google Scholar]
  • Luo D., Wang F., Zhu J., Cao F., Liu Y., Li X., Ren Z. (2016) Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration, in Proc. of the National Academy of Sciences 201608135. [Google Scholar]
  • Mcelfresh P.M., Holcomb D.L., Ector D. (2012) Application of nanofluid technology to improve recovery in oil and gas wells, in SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers, SPE154827. [Google Scholar]
  • Metin C.O., Baran J.R. Jr, Nguyen Q.P. (2012) Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface, J. Nanopart. Res. 14, 11, 1–16. [Google Scholar]
  • Moon T. (2010) Nanofluid technology promises large-scale performance gains from tight reservoirs, J. Pet. Technol. [Google Scholar]
  • Moradi B., Pourafshary P., Farahani F.J., Mohammadi M., Emadi M.A. (2015) Application of SiO2 nano particles to improve the performance of water alternating gas EOR process, in SPE Oil & Gas India Conference and Exhibition, Society of Petroleum Engineers, SPE 178040. [Google Scholar]
  • Nares H.R., Schachat P., Ramirez-Garnica M.A., Cabrera M., Noe-Valencia L. (2007) Heavy-crude-oil upgrading with transition metals, in Latin American & Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, SPE 107837. [Google Scholar]
  • Nazari Moghaddam R., Bahramian A., Fakhroueian Z., Karimi A., Arya S. (2015) Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks, Energy Fuels 29, 4, 2111–2119. [CrossRef] [Google Scholar]
  • Negin C., Ali S., Xie Q. (2016) Application of nanotechnology for enhancing oil recovery – A review, Petroleum 2, 4, 324–333. [CrossRef] [Google Scholar]
  • Nikolov A., Wasan D. (2014) Wetting-dewetting films: the role of structural forces, Adv. Colloid Interface Sci. 206, 207–221. [CrossRef] [PubMed] [Google Scholar]
  • Nwidee L.N., Al-Anssari S., Barifcani A., Sarmadivaleh M., Lebedev M., Iglauer S. (2017) Nanoparticles influence on wetting behaviour of fractured limestone formation, J. Petrol. Sci. Eng. 149, 782–788. [CrossRef] [Google Scholar]
  • Ogolo N.A., Olafuyi O.A., Onyekonwu M.O. (2012) Enhanced oil recovery using nanoparticles, Society of Petroleum Engineers, https://doi.org/10.2118/160847-MS. [Google Scholar]
  • Onyekonwu M.O., Ogolo N.A. (2010) Investigating the use of nanoparticles in enhancing oil recovery, Society of Petroleum Engineers, https://doi.org/10.2118/140744-MS. [Google Scholar]
  • Qiu F., Mamora D.D. (2010) Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska north slope area, in Canadian Unconventional Resources and International Petroleum Conference, Society of Petroleum Engineers, CSUG/SPE 136758, https://doi.org/10.2118/136758-MS. [Google Scholar]
  • Rezakazemi M., Mirzaei S., Asghari M., Ivakpour J. (2017) Aluminum oxide nanoparticles for highly efficient asphaltene separation from crude oil using ceramic membrane technology, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 6, 34. [CrossRef] [Google Scholar]
  • Sethumadhavan G.N., Nikolov A.D., Wasan D.T. (2001) Stability of liquid films containing monodisperse colloidal particles, J. Colloid Interface Sci. 240, 1, 105–112. [CrossRef] [Google Scholar]
  • ShamsiJazeyi H., Miller C.A., Wong M.S., Tour J.M., Verduzco R. (2014) Polymer-coated nanoparticles for enhanced oil recovery, J. Appl. Polym. Sci. 131, 15. [Google Scholar]
  • Sharma T., Iglauer S., Sangwai J.S. (2016) Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration and applications for chemical enhanced oil recovery, Ind. Eng. Chem. Res., 55, 48, 12387–12397. [CrossRef] [Google Scholar]
  • Skauge T., Spildo K., Skauge A. (2010) Nano-sized particles for EOR, in SPE Improved Oil Recovery Symposium, Tulsa, OK, April, 24–28, Society of Petroleum Engineers: Richardson, TX, SPE-129933-MS. [Google Scholar]
  • Somasundaran P., Mehta S.C., Rhein L., Chakraborty S. (2007) Nanotechnology and related safety issues for delivery of active ingredients in cosmetics, MRS Bull. 32, 10, 779–786. [CrossRef] [Google Scholar]
  • Suleimanov B.A., Ismailov F.S., Veliyev E.F. (2011) Nanofluid for enhanced oil recovery, J. Petrol. Sci. Eng. 78, 2, 431–437. [Google Scholar]
  • Sun X., Zhang Y., Chen G., Gai Z. (2017) Application of nanoparticles in enhanced oil recovery: a critical review of recent progress, Energies 10, 3, 345. [CrossRef] [Google Scholar]
  • Torsater O., Li S., Hendraningrat L. (2013a) Enhancing oil recovery of low-permeability Berea sandstone through optimised nanofluids concentration, Society of Petroleum Engineers, https://doi.org/10.2118/165283-MS. [Google Scholar]
  • Torsater O., Li S., Hendraningrat L. (2013b) Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: An experimental investigation, Society of Petroleum Engineers, https://doi.org10.2118/165955-MS. [Google Scholar]
  • Trokhymchuk A., Henderson D., Nikolov A., Wasan D.T. (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film, Langmuir 17, 4940–4947. [CrossRef] [Google Scholar]
  • Vafaei S., Wen D.S. (2010) Bubble formation in a quiescent pool of gold nanoparticle suspension, Adv. Colloid Interface Sci. 159, 10, 72–93. [CrossRef] [PubMed] [Google Scholar]
  • Verga F., Lombardi M., Maddinelli G., Montanaro L. (2017) Introducing core-shell technology for conformance control, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 1, 5. [CrossRef] [Google Scholar]
  • Wasan D.T., Nikolov A.D. (2003) Spreading of nanofluids on solids, Nature 423, 156–159. [Google Scholar]
  • Wasan D., Nikolov A., Kondiparty K. (2011) The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure, Curr. Opin. Colloid Interface Sci. 16, 4, 344–349. [CrossRef] [Google Scholar]
  • Wen D.S. (2008) On the role of structural disjoining pressure to boiling heat transfer with thermal nanofluids, J. Nanopart. Res. 10, 7, 1129–1140. [CrossRef] [Google Scholar]
  • Worthen A.J., Bryant S.L., Huh C., Johnston K.P. (2013) Carbon dioxide-in-water foams stabilized with nanoparticles and surfactant acting in synergy, AIChE J. 59, 9, 3490–3501. [CrossRef] [Google Scholar]
  • Worthen A.J., Foster L.M., Dong J., Bollinger J.A., Peterman A.H., Pastora L.E., Bryant S.L., Truskett T.M., Bielawski C.W., Johnston K.P. (2014) Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles, Langmuir 30, 4, 984–994. [CrossRef] [PubMed] [Google Scholar]
  • Xiang W., Zhao S., Song X., Fang S., Wang F., Zhong C., Luo Z. (2017) Amphiphilic nanosheet self-assembly at the water/oil interface: computer simulations, Phys. Chem. Chem. Phys. 19, 11, 7576–7586. [CrossRef] [PubMed] [Google Scholar]
  • Yu W., Xie H. (2012) A review on nanofluids: Preparation, stability mechanisms, and applications, J. Nanomater. 2012, 1. [Google Scholar]
  • Zhang H., Nikolov A., Wasan D. (2014a) Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments, Energy Fuels 28, 5, 3002–3009. [CrossRef] [Google Scholar]
  • Zhang H., Nikolov A., Wasan D. (2014b) Dewetting film dynamics inside a capillary using a micellar nanofluid, Langmuir 30, 31, 9430–9435. [CrossRef] [Google Scholar]
  • Zhang H., Ramakrishnan T.S., Nikolov A., Wasan D. (2016) Enhanced oil recovery driven by nanofilm structural disjoining pressure: Flooding experiments and microvisualization, Energy Fuels 30, 4, 2771–2779. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.