7th Takreer Research Centre Symposium
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 73, 2018
7th Takreer Research Centre Symposium
Article Number 59
Number of page(s) 10
DOI https://doi.org/10.2516/ogst/2018053
Published online 20 November 2018
  • Marafi M., Stanislaus A. (2008) Spent catalyst waste management: A review. Part I-Developments in hydroprocessing catalyst waste reduction and use, Resour. Conserv. Recy. 52, 859–873. [CrossRef] [Google Scholar]
  • Marafi M., Stanislaus A. (2008) Spent catalyst waste management: A review. Part II. Advances in metal recovery and safe disposal methods, Resour. Conserv. Recy. 53, 1–26. [CrossRef] [Google Scholar]
  • Eijsbouts S., Battiston A.A., van Leerdam G.C. (2008) Life cycle of hydroprocessing catalysts and total catalyst management, Catal. Today 130, 361–373. [CrossRef] [Google Scholar]
  • Stanislaus A., Marafi A., Rana M.S. (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production, Catal. Today 153, 1–68. [CrossRef] [Google Scholar]
  • Bruneta S., Meya D., Perot G., Bouchyb C., Diehlb F. (2005) On the hydrodesulfurization of FCC gasoline: a review, Appl. Catal. A-Gen. 278, 143–172. [CrossRef] [Google Scholar]
  • Song C. (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catal. Today 86, 211–263. [CrossRef] [Google Scholar]
  • Infantes-Molina A., Romero-Pérez A., Mérida-Robles J., Jiménez-López A., Rodríguez- Castellón E., Eliche-Quesada D. (2012) Transition metal sulfide catalysts for petroleum upgrading – Hydrodesulfurization reactions, hydrogenation, in: Karamé I. (ed.), InTech. [Google Scholar]
  • Egorova M., Prins R. (2004) Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3, J. Catal. 224, 278–287. [CrossRef] [Google Scholar]
  • Prins R., Egorova M., Rothlisberger A., Zhao Y., Sivasankar N., Kukula P. (2006) Mechanisms of hydrodesulfurization and hydrodenitrogenation, Catal. Today 111, 84–93. [CrossRef] [Google Scholar]
  • Lauritsen J.V., Kibsgaard J., Olesen G.H., Moses P.G., Hinnemann B., Helveg S., Nørskov J.K., Clausen B.S., Topsøe H., Lægsgaard E., Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220–233. [CrossRef] [Google Scholar]
  • Hensen E.J.M (2000) Hydrodesulfurization Catalysis and Mechanism of Supported Transition Metal Sulfides, PhD Thesis, Technische Universiteit Eindhoven, 12–17 [Google Scholar]
  • Huang T., Jundong Xu, fan Y. (2018) Effect of concentration and microstructure of active phase on the selective hydrodesulfurization performance of sulfide CoMo/Al2O3 catalysts, App. Catal. B: Env. 220, 42–56. [CrossRef] [Google Scholar]
  • Dufresne P. (2007) Hydroprocessing catalysts regeneration and recycling, Appl. Catal. A-Gen 322, 67–75. [CrossRef] [Google Scholar]
  • Eijsbouts S., Plantenga F., Leliveld B., Inoue Y., Fujita K. (2003) STARS and NEBULA - New generations of hydroprocessing catalysts for the production of ultra low sulfur diesel, Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem. 48, 2, 494. [Google Scholar]
  • Marafi M., Kam E.K.T., Stanislaus A., Absi-Halabi M. (1996) Rejuvenation of residual oil hydrotreating catalysts by leaching of foulant metals: modelling of the metal leaching process, Appl. Catal. A-Gen 147, 35–46. [CrossRef] [Google Scholar]
  • Mederos F.S., Ancheyta J., Chen J. (2009) Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A-Gen 355, 1–19. [CrossRef] [Google Scholar]
  • Henry C.H., Gilber J.B. (1973) Scale up of pilot plant data for catalytic hydroprocessing, Ind. Eng. Chem. Process Des. Dev. 12, 3, 328–334. [CrossRef] [Google Scholar]
  • Yokoyama Y., Ishikawa N., Nakanishi K., Satoh K., Nishijima A., Shimada H., Matsubayashi N., Nomura M. (1996) Deactivation of Co-Mo/Al2O3 hydrodesulfurization catalysts during a one-year commercial run, Catal. Today 29, 261–266. [CrossRef] [Google Scholar]
  • Takana Y., Shimada H., Matsubayashi N., Nishijima A., Nomura M. (1998) Accelerated deactivation of hydrotreating catalysts: comparison to long-term deactivation in a commercial plant, Catal. Today 45, 319–325. [CrossRef] [Google Scholar]
  • Venkatesh R.P., Bhaskar M., Sakthivel S., Selvaraju N., Velan M. (2010) Pilot Plant studies on accelerated deactoivation of commercial hydrotreating catalyst, Petr. Sci. Technol. 28, 93–102. [CrossRef] [Google Scholar]
  • Schuman S.C., Shalit H. (1971) Hydrodesulfurization, Catal. Rev. 4, 245–318. [CrossRef] [Google Scholar]
  • Yang H., Briker Y., Szynkarczuk R., Ring Z. (2004) Prediction of density and cetane number of diesel fuel from GC-FIMS and PIONA hydrocarbon composition by neural network, Prepr. Pa.-Am. Chem. Soc, Div Fuel. Chem. 49, 1, 81–83. [Google Scholar]
  • Qian Y., Qiu Y., Zhang Y., Lu X. (2017) Effect of different aromatics blended with diesel on combustion and emission characteristics with a common rail diesel engine, App. Therm. Eng. 125, 1530–1538. [CrossRef] [Google Scholar]
  • Lauritsen J.V., Kibsgaard J., Olesen G.H., Moses P.G., Hinnemann B., Helveg S., Nørskov J.K., Clausen B.S., Topsøe H., Lægsgaard E., Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220–233. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.