- Marafi M., Stanislaus A. (2008) Spent catalyst waste management: A review. Part I-Developments in hydroprocessing catalyst waste reduction and use, Resour. Conserv. Recy. 52, 859–873. [CrossRef] [Google Scholar]
- Marafi M., Stanislaus A. (2008) Spent catalyst waste management: A review. Part II. Advances in metal recovery and safe disposal methods, Resour. Conserv. Recy. 53, 1–26. [CrossRef] [Google Scholar]
- Eijsbouts S., Battiston A.A., van Leerdam G.C. (2008) Life cycle of hydroprocessing catalysts and total catalyst management, Catal. Today 130, 361–373. [CrossRef] [Google Scholar]
- Stanislaus A., Marafi A., Rana M.S. (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production, Catal. Today 153, 1–68. [CrossRef] [Google Scholar]
- Bruneta S., Meya D., Perot G., Bouchyb C., Diehlb F. (2005) On the hydrodesulfurization of FCC gasoline: a review, Appl. Catal. A-Gen. 278, 143–172. [CrossRef] [Google Scholar]
- Song C. (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catal. Today 86, 211–263. [CrossRef] [Google Scholar]
- Infantes-Molina A., Romero-Pérez A., Mérida-Robles J., Jiménez-López A., Rodríguez- Castellón E., Eliche-Quesada D. (2012) Transition metal sulfide catalysts for petroleum upgrading – Hydrodesulfurization reactions, hydrogenation, in: Karamé I. (ed.), InTech. [Google Scholar]
- Egorova M., Prins R. (2004) Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3, J. Catal. 224, 278–287. [CrossRef] [Google Scholar]
- Prins R., Egorova M., Rothlisberger A., Zhao Y., Sivasankar N., Kukula P. (2006) Mechanisms of hydrodesulfurization and hydrodenitrogenation, Catal. Today 111, 84–93. [CrossRef] [Google Scholar]
- Lauritsen J.V., Kibsgaard J., Olesen G.H., Moses P.G., Hinnemann B., Helveg S., Nørskov J.K., Clausen B.S., Topsøe H., Lægsgaard E., Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220–233. [CrossRef] [Google Scholar]
- Hensen E.J.M (2000) Hydrodesulfurization Catalysis and Mechanism of Supported Transition Metal Sulfides, PhD Thesis, Technische Universiteit Eindhoven, 12–17 [Google Scholar]
- Huang T., Jundong Xu, fan Y. (2018) Effect of concentration and microstructure of active phase on the selective hydrodesulfurization performance of sulfide CoMo/Al2O3 catalysts, App. Catal. B: Env. 220, 42–56. [CrossRef] [Google Scholar]
- Dufresne P. (2007) Hydroprocessing catalysts regeneration and recycling, Appl. Catal. A-Gen 322, 67–75. [CrossRef] [Google Scholar]
- Eijsbouts S., Plantenga F., Leliveld B., Inoue Y., Fujita K. (2003) STARS and NEBULA - New generations of hydroprocessing catalysts for the production of ultra low sulfur diesel, Prepr. Pap.-Am. Chem. Soc. Div. Fuel Chem. 48, 2, 494. [Google Scholar]
- Marafi M., Kam E.K.T., Stanislaus A., Absi-Halabi M. (1996) Rejuvenation of residual oil hydrotreating catalysts by leaching of foulant metals: modelling of the metal leaching process, Appl. Catal. A-Gen 147, 35–46. [CrossRef] [Google Scholar]
- Mederos F.S., Ancheyta J., Chen J. (2009) Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A-Gen 355, 1–19. [CrossRef] [Google Scholar]
- Henry C.H., Gilber J.B. (1973) Scale up of pilot plant data for catalytic hydroprocessing, Ind. Eng. Chem. Process Des. Dev. 12, 3, 328–334. [CrossRef] [Google Scholar]
- Yokoyama Y., Ishikawa N., Nakanishi K., Satoh K., Nishijima A., Shimada H., Matsubayashi N., Nomura M. (1996) Deactivation of Co-Mo/Al2O3 hydrodesulfurization catalysts during a one-year commercial run, Catal. Today 29, 261–266. [CrossRef] [Google Scholar]
- Takana Y., Shimada H., Matsubayashi N., Nishijima A., Nomura M. (1998) Accelerated deactivation of hydrotreating catalysts: comparison to long-term deactivation in a commercial plant, Catal. Today 45, 319–325. [CrossRef] [Google Scholar]
- Venkatesh R.P., Bhaskar M., Sakthivel S., Selvaraju N., Velan M. (2010) Pilot Plant studies on accelerated deactoivation of commercial hydrotreating catalyst, Petr. Sci. Technol. 28, 93–102. [CrossRef] [Google Scholar]
- Schuman S.C., Shalit H. (1971) Hydrodesulfurization, Catal. Rev. 4, 245–318. [CrossRef] [Google Scholar]
- Yang H., Briker Y., Szynkarczuk R., Ring Z. (2004) Prediction of density and cetane number of diesel fuel from GC-FIMS and PIONA hydrocarbon composition by neural network, Prepr. Pa.-Am. Chem. Soc, Div Fuel. Chem. 49, 1, 81–83. [Google Scholar]
- Qian Y., Qiu Y., Zhang Y., Lu X. (2017) Effect of different aromatics blended with diesel on combustion and emission characteristics with a common rail diesel engine, App. Therm. Eng. 125, 1530–1538. [CrossRef] [Google Scholar]
- Lauritsen J.V., Kibsgaard J., Olesen G.H., Moses P.G., Hinnemann B., Helveg S., Nørskov J.K., Clausen B.S., Topsøe H., Lægsgaard E., Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220–233. [CrossRef] [Google Scholar]
Open Access
Numéro |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
7th Takreer Research Centre Symposium
|
|
---|---|---|
Numéro d'article | 59 | |
Nombre de pages | 10 | |
DOI | https://doi.org/10.2516/ogst/2018053 | |
Publié en ligne | 20 novembre 2018 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.