Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 27
Number of page(s) 8
Published online 14 August 2018
  • API (1998) Venting atmospheric and low-pressure storage tanks (nonrefrigerated and refrigerated), API Standard 2000, 5th edn., API, Washington, DC. [Google Scholar]
  • API (2002) Design and construction of large, welded, low-pressure storage tanks. API Std 620, API, Washington, DC. [Google Scholar]
  • API (2008) Sizing, selection, and installation of pressure-relieving devices in refineries, Part I sizing and selection, API, RP 520, API, Washington, DC. [Google Scholar]
  • API (2009a) Guide for pressure-relieving and depressuring systems, API, RP 521, API, Washington, DC. [Google Scholar]
  • API (2009b) Inspection of pressure-relieving devices, API, RP 576, API, Washington, DC. [Google Scholar]
  • Argyropoulos C., Christolis M., Nivolianitou Z., Markatos N. (2012) A hazards assessment methodology for large liquid hydrocarbon fuel tanks, J. Loss Prev. Process Ind. 25, 329–335. [CrossRef] [Google Scholar]
  • ASME (2009) Pressure relief devices boiler & pressure vessel code, section VIII, division 1, rules for construction of pressure vessels, ASME, PTC 25. [Google Scholar]
  • Aydemir N.U., Magapu V.K., Sousa A.C.M., Venart J.E.S. (1988) Thermal response analysis of LPG tanks exposed to fire, J. Hazard. Mater. 20, 239–262. [CrossRef] [Google Scholar]
  • Carlsaw H.S., Jeager J.C. (1959) Conduction of heat in solids, Oxford University Press, Oxford, UK, 959 p., ISBN-01985336831. [Google Scholar]
  • Carruth G.F., Kobayashi R. (1973) Vapor pressure of normal paraffins ethane through n-Decane from their triple points to about 10 Mm Hg, J. Chem. Eng. Data 18, 2, 115–126. [CrossRef] [Google Scholar]
  • Çengel Y., Boles M. (2001) Thermodynamics: An engineering approach, McGraw-Hill Book Company, Inc., ISBN-10:0072549041. [Google Scholar]
  • Chang J., Lin C.-C. (2006) A study of storage tank accidents, J. Loss Prev. Process Ind. 19, 51–59. [Google Scholar]
  • Chen H.-J., Lin S.-P. (2001) Fire dynamics and solar heating influence on an oval-shaped, Ind. Eng. Chem. Res. 40, 17, 3817–3828. [CrossRef] [Google Scholar]
  • CSTB (2002) Fire physics for engineers [Physique du feu pour l’ingénieur], CSTB, France, ISBN: 978-2-86891-305-0. [Google Scholar]
  • de Hemptinne J.C., Béhar E. (2006) Thermodynamic modelling of petroleum fluids, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 61, 3, 303–317. [CrossRef] [Google Scholar]
  • de Nevers N. (1997) Ambient and solar heating of propane containers, Fire Technol. 33, 3, 230–253. [CrossRef] [Google Scholar]
  • De Vriendt A.B. (1990) Heat transfer [La transmission de la chaleur]. Vol. 1. Conduction [La conduction], ISBN:2-89105-339-7. [Google Scholar]
  • Guo X.-Q., Sun C.-Y., Rong S.-X., Chen G.-J., Guo T.-M. (2001) Equation of state analog correlations for the viscosity and thermal conductivity of hydrocarbons and reservoir fluids, J. Petrol. Sci. Eng. 30, 15–27. [CrossRef] [Google Scholar]
  • Handbook of Chemistry (2004) McGraw-Hill Book Company, Inc., New York, ISBN-10:0071410376 [Google Scholar]
  • Hauser J., Ciolek W., Fisher H., Forrest H., Grolmes M., Grossel S., Keiter A., Muller A., Nazario F., Nichols F.P., Stipanovich J., Wilday J., Windhorst J. (2001) Vent sizing for fire considerations: external fire duration, jacketed vessels and heat flux variations owing to fuel composition, J. Loss Prev. Process Ind. 14, 403–412. [CrossRef] [Google Scholar]
  • Ingersoll L.R., Zobel O.J., Ingersoll A.C. (1955) Heat conduction, with engineering, geological, and other applications, 3rd edn., Thames and Hudson, London, pp. xiii, 325. [Google Scholar]
  • Karimpour K., Zarghami R., Moosavian M.A., Bahmanyar H. (2016) New fuzzy model for risk assessment based on different types of consequences, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 17. [Google Scholar]
  • Khan F.I., Abbasi S.A. (2000) TORAP – a new tool for conducting rapid risk-assessments in petroleum refineries and petrochemical industries, Appl. Energy 65, 87–210. [Google Scholar]
  • Kourneta P., Ziomas I., Contini S., Drogaris G. (1994) Development of a model for simulating the variability of the physical properties of substances, stored in various storage tanks, in the presence of an external heat source, J. Hazard. Mater. 39, 1, 1–18. [CrossRef] [Google Scholar]
  • Lacassagne T., El-Hajem M., Morge F., Simoens S., Champagne J.-Y. (2017) Study of gas liquid mass transfer in a grid stirred tank, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 7. [CrossRef] [Google Scholar]
  • Landucci G., Gubinelli G., Antonioni G., Cozzani V. (2009b) The assessment of the damage probability of storage tanks in domino events triggered by fire, Accident Anal. Prev. 41, 1206–1215. [CrossRef] [Google Scholar]
  • Landucci G., Molag M., Cozzani V. (2009a) Modeling the performance of coated LPG tanks engulfed in fires, J. Hazard. Mater. 172, 1, 447–456. [CrossRef] [Google Scholar]
  • Maillet D., André S., Batsale J.C., Degiovanni A., Moyne C. (2000) Thermal quadrupoles, solving the heat equation through integral transforms, Wiley Editor, p. 384, ISBN-10: 0471983209. [Google Scholar]
  • Majer V., Svoboda V. (1985a) Enthalpies of vaporization of organic compounds: a critical review and data compilation, Blackwell Scientific Publications, Oxford, p. 300. [Google Scholar]
  • Majer V., Svoboda V. (1985b) Enthalpies of vaporization of organic compounds: a critical review and data compilation, Blackwell Scientific Publications, Oxford, p. 300. [Google Scholar]
  • Neau E., Peneloux A., Solimando R., Rogalski M. (1995) Étude d’équations d’état en vue de représenter les propriétés PVT et les équilibres liquide-vapeur d’hydrocarbures, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 50, 6, 791–805. [Google Scholar]
  • NIST (2012) Data Gateway, consulted in 2016. [Google Scholar]
  • Nitesh J., Gupta J.P. (2007) Water requirement in tank farm fire, J. Petrol. Sci. Eng. 55, 1–2, 167–173. [CrossRef] [Google Scholar]
  • Persson B., Lonnermark A., Persson H. (2003) FOAMSPEX: large scale foam application – modelling of foam spread and extinguishment, Fire Technol. 39, 347–362. [CrossRef] [Google Scholar]
  • Prugh R. (1992) Hazardous fluid releases: prevention and protection by design and operation, J. Loss Prev. Process Ind. 5, 2, 66–72. [CrossRef] [Google Scholar]
  • Ribaud (1960) Heat conduction in unsteady state [Conduction de la chaleur en régime variable], Gauthier-Villars, ISBN: 155 639 60. [Google Scholar]
  • Subba R., Gorla R. (2010) Probabilistic analysis of a liquefied natural gas storage tank, Appl. Therm. Eng. 30, 2763–2769. [CrossRef] [Google Scholar]
  • Wang D., Zhang P., Chen L. (2013) Fuzzy fault tree analysis for fire and explosion of crude oil tanks, J. Loss Prev. Process Ind. 26, 1390–1398. [CrossRef] [Google Scholar]
  • Williamham C.B., Taylor W.J., Pignocco J.M., Rossini F.D. (1945) Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. Res. Natl. Bur. Stand. (US) 35, 219–244. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.